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Abstract:Traditional multi-scale image fusion techniques often struggle to maintain translation 

invariance during the multi-directional and multi-scale decomposition of images. While the non-

downsampled contourlet transform (NSCT) exhibits multi-scale, multi-directional, and translation-

invariant properties, it is limited by directional constraints. This paper introduces a novel image 

fusion framework based on the non-subsampled shearlet transform (NSST) domain. This 

framework effectively preserves image energy and detail while addressing the directional 

limitations in image decomposition. The proposed method employs NSST for decomposing the 

source images and utilizes a pulse coupled neural network (PCNN) model to differentiate the 

absolute values of high-frequency coefficients across various source images. The low-frequency 

fusion rule is derived from low-level feature perception image quality metrics, such as image local 

energy and phase consistency. Subsequently, the NSST inverse transform is applied to reconstruct 

the fused high-frequency and low-frequency components. This approach retains more image 

Enhanced Image Fusion Using Shearlet Transform and Pulse-Coupled Neural Networksthe 

proposed fusion framework outperforms existing methods in infrared-visible image fusion. 
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1. Introduction 

Image fusion integrates complementary information from multiple source images in the same scene 

to generate a composite image. For an image fusion system, the input source images can be acquired 

either from different types of imaging sensors or one sensor with different optical parameter 

settings. So the fused image as output is more suitable for human perception and machine 

processing than any individual source image. Image fusion techniques have been widely used in 

computer vision, surveillance, medical imaging, remote sensing, and so on [1]. 

Pixel-level fusion algorithms are mainly categorized as spatial domain and transform domain- based 

solutions [1]. Spatial domain-based solutions directly extract useful information from source images 

for image fusion [1]. As the simplest way, pixel weighted average strategy is always applied to 

source image pixels. It often blurs the contour and edge information of source images, loses the 

useful information, and causes low-quality image fusion results. To enhance the visual quality in the 

fused image, area, and block segmentation based image fusion solutions are proposed [2]. Although 

the visual performance of the fused image is improved, the corresponding segmentation algorithm is 

comparatively complex, and not good for real-time processing. In spatial domain-based image 

fusion algorithms, it is difficult to determine the size and features of sub-block. V. Atlanta proposed a 

differential evolution solution to determine the size of the split image [2]. 

Based on quad-tree structure and morphology, I.De proposed a novel image fusion algorithm 

[3].M.Bagher integrated block segmentation and discrete cosine transform into image fusion [4]. 
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Other image block recognition and selection methods, such as pulse-coupled neural networks 

(PCNNs), artificial neural networks [5], had been successfully applied to image fusion.  

Although most of the existing solutions can obtain high-quality fusion results in certain extents, fused 

images may still be unsmooth. The pyramid-based image fusion method is widely used in the 

transform domain method. However, the pyramid-based transform is lack of direction, so it cannot 

extract detailed image information in a different direction [5]. 

In recent years, following the continuous research on wavelet analysis and multi-resolution theory, 

some new wavelet transforms, such as discrete wavelet(DWT) [6], fuzzy wavelet [7], double-tree 

complex wavelet(DTCWT) [8], and M-band wavelet transform [5], have been introduced into 

image fusion. However, DWT or DTCWT cannot represent the curve and edge information of the 

image well[9] [5]. To represent the spatial structures of the image more accurately, some novel 

multi-scale geometric analysis tools are introduced into image fusion. For example, contourlet 

transform can capture the intrinsic geometric structure of the image, and maximize the use of 

geometric characteristics of data, such as line singularities, plane singularities [5]. Since contourlet 

transform contains the downsampling process, it has no shift- invariant property. Nonsubsampled 

contourlet transform (NSCT) can represent complex spatial structures in many different directions 

well [10]. 

This paper proposes a new image fusion framework for the non-subsampled shearlet transform 

(NSST) domain. The fusion framework can well preserve image energy and detail, and solve the 

problem of limited direction in image decomposition. This method uses NSST to decompose the 

source image. The pulse coupled neural network (PCNN) model is used to distinguish the absolute 

values of high-frequency coefficients in different source images. The low-frequency fusion rule is 

formulated according to the low-level feature perception image quality such as image local energy 

and phase consistency. Experiments have shown that the introduction of the PCNN model in image 

fusion will improve the efficiency of the algorithm and reduce the fusion time. This method can 

better preserve the energy and detail of the source image. More importantly, the fusion algorithm is 

based on the transform domain and fully combines the advantages of NSCT, PCNN model, and 

phase consistency information to better capture the details of the source image. In contrast 

experiments, 10 sets of infrared-visible images are applied to the fusion performance testing. The 

experimental results show that the fusion framework is superior to the KIM and MST fusion methods 

in terms of human visual perception and objective evaluation. 

2. Proposed Framework 

2.1. Overview 

The proposed image fusion framework is shown in Fig.1, which includes four components: image 

decomposition, high-pass band fusion, low-pass band fusion, and image reconstruction. As shown in 

Fig.1, source images are decomposed into high and low-frequency bands by applying NSST. Then 

for high-frequency coefficients, the PCNN model is introduced as the high- frequency coefficient 

activity metric to realize high-frequency fusion. In the low-frequency fusion, the design is based on 

the fusion rules of local abrupt changes, local energy and PC features to achieve energy preservation 

and detail extraction of low-frequency images. Finally, the fused image is obtained by the inverse 

transform of NSST. 



 

 

 

                               

 

 

Figure 1. The proposed image fusion framework 

2.1.1. Fusion Rule of Low-Frequency Bands 

The lowpass subband of NSST filtered images mainly describes the detailed information 

corresponding to the texture and edge information of source images. Thus the key of highpass 

subband fusion it to enhance the detailed feature of each source image. 

In this paper, to make the lowpass subband image more informative, phase congruency (PC) is 

implemented to enhance the image features. PC is a dimensionless measure that can measure the 

significance of the image features. In the lowpass subbands, the value of PC is corresponding to the 

sharpness of the image object. Thus PC is used as the phases of the coefficient with maximal local 

sharpness. Since image can be regarded as a 2-D signal [huafeng], PC of the image at the location 

(x,y) can be calculated as eq.1 

                          (1) 

 

Design a new activity measure (NAM)that uses PC, LSCM, and LE complement to measure 

different aspects of information of the image. 

            (2) 

3. Experiments and Analysis 

3.1. Experiment Preparation 

10 pairs of infrared-visible images are applied to the fusion performance testing respectively, in 

contrast, experiments. The resolution of test images is 256×256, 240×320 respectively. Infrared-

visible and gray-level multi-focus image pairs were collected by Liu [1] and can be downloaded 

from quxiaobo.org. All the experiments are programmed in Matlab 2014a on an Intel(R) 

Core(TM)i7-7700k CPU @ 4.20GHz Desktop with 16.00 GB RAM. 

3.1.1. Object Evaluation Metrics 

It is not an easy task to quantitatively evaluate the quality of a fused image, as the reference image 

(ground truth) does not exist in practice. In recent years, many image fusion metrics have been 

proposed. But none of them can be universally applied to any fusion scenario. It is usually necessary 

to apply several metrics to make a comprehensive evaluation. In this paper, eight popular metrics 

are employed to quantitatively evaluate the performance of different fusion methods, which are QTE, 

QIE, QAB/F, QP, QMI, QY, QCB, and QVIF. 

3.1.  Experimental Result of Infrared-visible Images 

Infrared imaging can identify the target well, but it is not sensitive to the change of scene 



 

 

 

                               

 

brightness. Visible light imaging can provide better details of the scene where the target is located. 

Infrared and visible images can be synthesized organically by image fusion technology,which 

generates new descriptions of scenes or targets. This image fusion technology has been widely used 

in battlefield evaluation, target recognition and other fields. In the reconnaissance shooting task, the 

target image is acquired by infrared imaging device and visible light camera. Infrared thermal 

imaging technology uses thermal radiation technology to convert infrared wavelengths beyond the 

human eye’s observation wavelength into visible information mapped to the image. Visible light 

camera obtains high resolution, texture and edge information in detail. It is difficult to meet the actual 

needs of the project by only one type of image. Infrared-visible image fusion technology makes full 

use of the complementary information of visible and infrared images and space-time correlation to 

better meet the engineering requirements. We can get high-quality and comprehensive image 

information by integrating many kinds of image information. 

Figure 2 shows examples of infrared and visible images fusion. In Figure 7, (a), (b) are two source 

images, (c), (d), and (e) are the experimental results of KIM, MST, and our proposed method, 

respectively. And (f), (g), (h), (i), (j) correspond to local detail magnification maps of (a)-(e). As 

shown in Figure 7 (h1) and (h2), the image fused by the KIM method has high edge brightness and 

poor texture details. The fusion image obtained by the MST method is too high in contrast. For 

example, it weakens some details in (i1). Compared with KIM and MST, the fusion image obtained 

by our method has better performance in detail clarity and brightness. Through our method of image 

fusion, high-quality and comprehensive image information can be obtained. 

 

Figure 1. Infrared-visible Image Fusion Experiments 

 

As shown in Table 1, the MST fusion image obtained the best QP score. However, the human visual 

effects and detail preservation capabilities of MST fusion images are not as good as the proposed 



 

 

 

                               

 

method. QTE, QIE, QAB/F, QMI QCB, and QVIF obtained by our proposed method are the highest. It can 

be seen that this method has good performance in visual quality and structure preservation, and also 

has good performance in edge preservation. During the experiment, the testing time of the proposed 

method is shorter than KIM and MST. Therefore, the fusion framework of our method is better than 

other methods. 

 

Table 1. Objective Evaluations of Infrared-Visible Image Fusion Experimentations 

 QTE QIE QAB/F QP MI QY QCB VIFF time 

KIM 0.5343 0.8089 0.6228 0.5805 2.4381 0.7449 0.6386 0.5498 60.246282 

MST 0.5528 0.8092 0.7585 0.7795 2.4808 0.8517 0.6407 0.5861 10.785458s 

proposed 0.5871 0.8103 0.7959 0.7209 2.6897 0.8991 0.6597 0.5947 6.094225s 

4. Conclusion 

A general image fusion method based on a non-subsampled shearlet transform (NSST) is proposed. 

The fusion framework combines NSST, pulse coupled neural network (PCNN) and phase 

congruency (PC) to improve the visual quality of fused images. Specifically, the framework applies 

NSST to achieve image high and low-frequency decomposition. In the image high-frequency 

coefficient fusion, the high-frequency fusion is realized by introducing PCNN as the high-frequency 

coefficient activity metric. It can improve fusion speed. In the low-frequency fusion, the design is 

based on the fusion rules of local abrupt changes, local energy and PC features to achieve energy 

preservation and detail extraction of low-frequency images. Finally, the fused image is obtained by 

the inverse transform of NSST. The experimental results show that the fusion framework is superior 

to the KIM and MST fusion methods in terms of human visual perception and objective evaluation. 
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