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Abstract:The long prediction cycle and low accuracy of NOx emissions forecasts from power 

plant boilers significantly hinder effective pollutant control and emission reduction efforts. To 

address this, a predictive method integrating Principal Component Analysis (PCA), Modified Fruit 

Fly Optimization Algorithm (MFOA), and Least Square Support Vector Machine (LSSVM) is 

proposed. Initially, the high-dimensional sample matrix undergoes preprocessing. The sample 

space is then segmented based on the normalized levels of NOx emissions. PCA is employed to 

extract principal components from each subspace, thereby reducing dimensionality. The FOA is 

adapted into MFOA by incorporating an adaptive step size and modifying the odor determination 

value. Subsequently, LSSVM is utilized to develop prediction models for each subspace, with the 

kernel parameter and penalty factor optimized globally using MFOA. Finally, these sub-models are 

integrated through segmentation fitting to generate the overall model output. Simulation results 

demonstrate that the PCA-MFOA-LSSVM integrated method enhances prediction accuracy and 

reduces prediction time compared to other prediction models. 

Keywords:Principal Components Analysis; Fruit fly Optimization Algorithm; Least Square 

Support Vector Machine; NOx emissions. 

1. Introduction 

As the enhancing management of pollutant emissions generated by coal-fired units in state, the 

accurate and effective prediction models for pollutant emissions are of great significance for the 

further control of pollutant emissions reduction. Nitrogen Oxides (NOx) is one of the main 

components of thermal power generation pollutants, which is often of multivariate and strong 

coupling result in the difficulty of describing the process mathematically using simple traditional 

models (Song et al., 2018). 

At present, the common algorithm used for NOx emissions prediction modeling are the machine 

learning algorithm (Gu et al., 2015; Li et al., 2018; Zhen et al., 2019), such as Artificial Neural 

Networks (ANN), Support Vector Machines (SVM) and Least Square Support Vector Machine 

(LSSVM). Wang et al. (2016) used Genetic Algorithm (GA) to solve the problem of super- 

parameter optimization for LSSVM and constructed prediction model of NOx emissions for coal- fired 

boilers which improved the precision and reduced the training time. Liu et al. (2019) proposed a 

boiler NOx emissions prediction modeling method based on the Whale Optimization Algorithm-Least 

Squares Support Vector Machine (WOA-LSSVM) which enhanced the simulation performance. 

However, the following defects existed in this kind of predictive modeling method. The original 

input information could not be retained more completely when facing high-dimensional sample sets 

by using mechanism analysis of NOx formation, variable screening and other methods, which may 

result in worse accuracy improvement of prediction. The parameter optimization process of LSSVM 

is too long to meet the requirements of short- term prediction in the case of slightly larger sample 
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sets, and takes general effect. In order to reduce the dimensionality of high-dimensional sample sets 

for LSSVM model, Zhen et al. (2019) proposed a modeling method for NOx emissions of boiler flue 

gas based on multi-model clustering integration, which improved the accuracy of modeling. 

Principal Component Analysis (PCA) is a method which can effectively preserve the original input 

information, reduce the dimensionality, simplify the system structure and overcome the correlation 

between variables (Zhong et al., 2015; Peng et al., 2016). The data segmentation fitting can perform 

better block calculation, lessen the calculation amount and increase the calculation speed (Lv et al., 

2012) which can solve the problem that the optimization time is too long and the effect is not 

remarkable when the sample set is large. Then Fruit fly Optimization Algorithm (FOA) as a global 

optimization algorithm because of its simple algorithm, few parameters and high precision, it is 

often combined with LSSVM in various fields for predictive modeling. But it is easy to be limited to 

local optimum (Zhang et al., 2016; Xiao et al., 2016). 

An integrated prediction algorithm combined PCA and MFOA-LSSVM for NOx emissions of 

power boilers is proposed based on the above problems and referring to the documents of 

predecessors. According to the level of NOx value, the sample space is divided into two subspaces 

and the subspaces are reduced by PCA. Then the principal components whose cumulative 

contribution rate higher than 90% are regarded as the input of LSSVM. Next, the parameter kernel 

function width and penalty factor of LSSVM are optimized by Modified Fruit fly Optimization 

Algorithm (MFOA). Then MFOA-LSSVM is used to establish the prediction model of each 

subspace, and the overlapping sample points are processed finally by segmentation fitting to get 

final output of the model. The simulation results show that the proposed PCA-MFOA-LSSVM 

integration model shortens the prediction time and achieves higher precision and better 

generalization ability. 

2. Fundament of PCA, LSSVM and MFOA 

2.1. Principal Component Analysis (PCA) 

PCA (Abdi et al., 2010), a multivariate statistical technique, is used to mine internal correlations 

between multidimensional data. The method reduce dimension by using orthogonal transformation 

to transform a variable that may have correlation in the initial sample set into a new set of linear 

uncorrelated variables. The orthogonal transformation of PCA has different expressions in algebra 

and geometry. In algebra, it appears to transform from the covariance matrix or the correlation 

coefficients matrix of the initial vector into a diagonal matrix. In geometry, it appears to transform 

from the original coordinate system to a new orthogonal coordinate system. Therefore, such a 

transformation result in the variable points to p orthogonal directions in which the data points are 

distributed the most and the new variable retains the information of the initial variable to a large 

extent at the same time. 

An initial sample X=(X1, X2, ..., Xp) is assumed, here, p is the number of variables, xi=(x1,x2,...,xn)T, 

then the initial sample matrix can be represented the orthogonal matrix a by PCA in the form: 

 
yi= a1iX1+a2iX2+...+a2iXn=aiX (1) 

 
Orthogonal matrix a can be obtained by formula: 

 
| R-λI |=0 (2) 

 

2.2.  Modified Fruit fly Optimization Algorithm (MFOA) 

Large errors of final prediction modeling often result from directly using LSSVM, because the value 

of the kernel function σ and the penalty factor c will importantly affect the accuracy of the model 

prediction. Unreasonable parameter settings will result in poor reliability of modeling results (Si et 

al., 2017). As an interactive evolutionary optimization algorithm, Fruit fly Optimization Algorithm 

(FOA) achieves global optimization by simulating the foraging process of fruit fly groups. It is easy 



 

 
 

 

to make the whole population become local optimal for FOA, but it may lead to slow convergence 

and weak convergence. Therefore, MFOA is used to optimize σ and c to improve prediction 

accuracy. The following improvements are based on FOA: 

(1) In order to prevent precocity of FOA, an adaptive step size is introduced to change the search 

step size with the progress of iteration. 

(2) It is supposed that i is the current number of iterations, and δ(i) is the search step size at  the i-th 

iteration. That is, the search step size which S*(i-1) reaches S*(i) required. And S*(i) is the optimal 

odor concentration value at the i-th time iteration, and θ=|S*(i)-S*(i-1)| is the absolute value of the 

odor error. 
 

                   (3) 

The initial search step δ(1) is set to 3 or 15, and the initial optimal odor concentration value is S*(1). 

It indicates that the optimal odor concentration value of the i-th generation is better than that of the 

previous generation when S*(i)< S*(i-1), and then the search step size should be narrowed to 

improve the optimization precision. At the same time, it means that it is close to the optimal value 

when the value of θ is small and the search step should be sped up to quickly converge. The search 

step size should be increased to expand the search range to improve global optimization ability of 

the algorithm when S*(i) ≥ S*(i-1). The optimization effect at this time is not good when the value 

of θ is small, and the search step should be increased to find new spaces to continue searching. 

(2) In order to overcome the premature convergence of the algorithm and improve the accuracy, the 

odor determination value is modified as follows: 

 
W(i)=1/D(i)+η i=1, 2, ..., η (4) 

 
η=ρ·D(i) (5) 

 
Where, ρ is uniformly distributed and K is a constant. 

At the same time, the fruit fly group is randomly divided into two parts because the FOA algorithm 

is easy to fall into local optimum which results in precocity of the algorithm. Part of the population 

start searching for food in a small range at the beginning, and the other part begins to search for food 

in a large range, which prevents the occurrence of local optimality. 

3. Integration Model PCA-MFOA-LSSVM 

3.1. Data Preparations 

3.1.1 Selection of input variables The research object is a sub-critical 600MW double tangential 

boiler of a power plant. There are 48 pulverized coal burners distributed on the front and rear walls 

in six different heights, and there are five separate SOFA injectors on the top of the main bellows. 

The boiler system is a direct combustion system that uses six medium speed mills to produce 

pulverized coal and deliver it to six burners. The 3233 experimental data group of the boiler 

intercepted from the start-up to the steady-state in operating sampling cycle as initial sample set, 

which can better reflect the power system lifting load process. Figure 1 shows the load change of 

the initial sample set. 
 

 



 

 
 

 

 

Fig 1. Load change of initial sample set 

 
The characteristics of sample set include unit load, damper opening, working fluid flow and other 

index parameters, of which there are 37 input, and the output is NOx emissions. The meaning of the 

specific operating parameters of the initial sample set and its variation range are given in Table 1. 

The type of coal quality will have a huge impact on it for the NOx emissions of coal-fired boilers, but 

the coal quality is not replaced during operation for the experimental data, the impact on the results 

is not considered. 

3.1.2 Data processing In order to effectively prevent the occurrence of overfitting phenomenon, the 

initial sample set was processed by pauta criterion and the abnormal sample points were removed by 

using moving average filtering. The first 3000 sets of the initial sample set were used for training by 

the hold-out method to preserve the fidelity of the results, and the remaining samples were used for 

testing. Figure 2 shows the output portion of the initial sample set and how it is divided. 
 

Table 1. Variable description of initial sample set 

Variable meaning/(unit) variation range 

Unit load/(MW) 349.259~601.780 

Total air volume/(t•h-1) 1144.100~1704.700 

Total coal/(t•h-1) 182.065~317.144 

Air flow on sides A and B/(t•h-1) 505.970~962.439 

Furnace SOFA1-5 layer #1 corner burning secondary damper 

opening/ (%) 
-0.001~98.966 

Coal mill A-F inlet primary damper opening/ (%) 0.952~99.331 

Coal mill A-F outlet temperature/(°C) 43.763~83.080 

Secondary air flow at the inlet of the coal mill/(t•h-1) 365.745~523.516 

Coal feeder A-F instantaneous flow/(t•h-1) 0.217~65.168 

Air preheater A, B outlet secondary air pressure/(kPa) 0.385~1.012 

Air preheater A, B outlet secondary air temperature/(°C) 273.066~314.182 

Furnace outlet flue gas temperature 1, 2/(°C) 613.926~808.890 

Main steam pressure A, B/(kPa) 7.029~15.196 

NOx emissions/(mg/m-3) 246.712~345.750 

 



 

 
 

 

 

Fig 2. Output section of initial data sample set 

 
There are often different dimensions and orders of magnitude, because each type of sample has 

different meanings and characteristics. For the comprehensive consideration and validity of the 

modeling results, all variables in the sample set were first normalized and defined as: 

 

                             (6) 

According to the output NOx value, the sample data set was initially divided into two data subspaces 

D_l and D_h. The overlapping parts of the two subspaces can better reflect the dynamic 

characteristics of the system. The specific division rules are defined as: 

                              (7) 

                                            

3.2. Results of Model Simulation 

Sample sub-spaces were normalized, and the NOx emissions impact factor of each subspace was 

reduced according to the PCA. The main components and their contribution rates are shown in Table 

2 and Table 3. It can be seen from Table 2 and Table 3 that the accumulative contribution rate of the 

first four principal components is 92.3142% for the sample space D_l and the cumulative 

contribution rate of the first three principal components is 90.5680% for the sample space D_h, which 

are all exceeding 90%. The PCA requirements can be extracted when the cumulative contribution 

rate is higher than 85%, so they are used to replace the initial input variables on the respective 

sample spaces. 

 
Table 2. PCA results (partial) of space D_l 

Principal component 

number 
Eigenvalues 

Contribution rate 

(%) 

Cumulative contribution rate 

(%) 

1 1.7132 58.5533 58.5533 

2 0.4988 17.0470 75.6003 

3 0.3794 12.9676 88.5679 

4 0.1079 3.6868 92.2547 

5 0.0603 2.0595 94.3142 

6 0.0520 1.7762 96.0904 

7 0.0298 1.0188 97.1092 



 

 
 

 

8 0.0182 0.6209 97.7301 

 
Table 3. PCA results (partial) of space D_h 

Principal component 

number 
Eigenvalues 

Contribution rate 

(%) 

Cumulative contribution rate 

(%) 

1 2.2849 70.8227 70.8227 

2 0.3457 10.7143 81.5370 

3 0.2914 9.0310 90.5680 

4 0.0798 2.4744 93.0424 

5 0.0657 2.0357 95.0781 

6 0.0412 1.2770 96.3552 

7 0.0334 1.0344 97.3895 

8 0.0196 0.6080 97.9976 

 

The kernel function width σ and penalty factor c of LSSVM were super-parametric optimized by 

MFOA. The maximum number of iterations was n=100, the population size was m=20, and the 

population position coordinates were randomly initialized. Figure 3 (a) and (b) show the iterative 

process on subspaces D_l and D_h. And then the σ and c were obtained after parameter optimization. 
 
 

(a) Optimization process results of D_l space 



 

 
 

 

 

(b)Optimization process results of D_h space 

Fig 3. Iterative process of MFOA 

 
Subspace parameters obtained by MFOA optimization were substituted into LSSVM to establish a 

model of each subspace, and then the segmentation method was used to weight the overlapping 

sample points of the subspace that obtained the output of the model for the training sample and the 

test sample which was shown in Figure 4 (a) and (b) respectively. 

 

 
 



 

 
 

 

(a) Results of training 

(b) Results of test 

Fig 4. Comparison of measured and predicted values 

3.3. Comparison of the Prediction Performance Among the Selected Models 

In order to verify that the PCA-MFOA-LSSVM integration model has better performance than other 

models, the genetic parameters and penalty factors of LSSVM were optimized by Genetic 

optimization Algorithm (GA), Particle Swarm Optimization (PSO) and Fruit fly Optimization 

Algorithms (FOA) respectively. At the same time, the models based on LSSVM and PCA-LSSVM 

was used as a comparative study. The output results for test set of different models are comparing 

given in Figure 5 and Table 4. Among them, LSSVM adopted grid parameter optimization. PSO, 

GA and FOA selects RMSE of LSSVM result as optimization function and odor concentration 

judgment function respectively. 
 

 

 

Fig 5. Comparison of measured and predicted values 

 
Table 4. Performance comparison of different prediction models 

Model MAE/ (%) MRE/ (%) t/(s) 

LSSVM 14.0698 4.78 3615.114 

PCA-LSSVM 10.5114 3.52 3490.850 

PCA-PSO- 9.6713 3.24 6144.510 



 

 
 

 

LSSVM 

PCA-GA-LSSVM 8.5763 2.80 1202.339 

PCA-FOA-

LSSVM 

6.9494 2.36 1909.733 

Proposed model 2.1894 1.64 1052.034 

 
It can be seen from Figure 5 and Table 4 that the integration model PCA-MFOA-LSSVM has a 

strong ability to track the change trend of the sample, and can significantly improve the prediction 

accuracy when compared to other selected models because the choice of kernel parameters and 

penalty factors will have a huge impact on the results for LSSVM, and general optimization 

methods are prone to fall into local optimums and precocity may occur. Therefore, the MFOA 

algorithm can be used to overcome these defects, which can further improve the accuracy of the 

model. 

In the meanwhile, the integration model PCA-MFOA-LSSVM could obtain prediction results in a 

shorter time than other models and shorten the simulation time, because the calculation amount of 

kernel parameter matrix increases a lot when the LSSVM processes a sample set with a large amount 

of data which is time consuming. Therefore, the amount of computation is reduced by dividing the 

data space and partition modeling, so the operation time is shorten. 

4. Conclusion 

A PCA-MFOA-LSSVM integration method is proposed to predict NOx emissions of power plant 

boilers and other similar prediction models are selected to serve as comparative study. The influence 

of correlation between inputs and output can be effectively eliminated after using PCA. And the 

prediction accuracy is obviously promoted and the prediction cycle is sharply shortened by means 

of applying MFOA and segmentation fitting when comparing with other selected prediction models. 

While the optimization performance of FOA has been enhance. In summary, the PCA-MFOA-

LSSVM integration model can accurately predict the NOx emissions, effectively solve the problems 

of low modeling accuracy, low generalization, long prediction time, etc. 
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