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Abstract: This study proposes a distributed node state identification framework that integrates contrastive
learning and federated optimization to address the heterogeneity, latency, and dynamism of distributed
systems. At the local node level, the framework introduces contrastive feature constraints by constructing
positive and negative sample pairs to achieve self-supervised alignment in the feature space, thereby
enhancing representational consistency and discriminative capability within nodes. At the global level, it
employs a federated optimization mechanism for parameter aggregation to enable collaborative learning and
global consistency across nodes. The framework consists of four core stages: feature encoding, contrastive
representation learning, federated aggregation, and consistency regulation, allowing efficient global
identification while preserving data privacy. To verify its effectiveness, multidimensional sensitivity
experiments were conducted, including analyses of hyperparameters, environmental factors, and data
perturbations. The results show that the framework maintains stable performance under varying weight
decay coefficients, temperature parameters, communication delays, and noise intensities, achieving
significant improvements over traditional centralized and single-node models in accuracy, precision, recall,
and F1-score. Further analysis demonstrates that the contrastive learning module effectively suppresses
noise interference and feature drift, while the federated optimization mechanism mitigates data distribution
bias among heterogeneous nodes, ensuring good convergence under high-latency and unbalanced conditions.
This study confirms that the integrated learning strategy can balance feature robustness, model consistency,
and computational efficiency, providing a feasible solution for building secure, stable, and efficient
distributed intelligent identification systems.
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1. Introduction
In modern computing architectures, distributed systems play a vital role. With the rapid growth of cloud
computing, edge computing, and the Internet of Things, the complexity, heterogeneity, and dynamic nature of
system nodes have greatly increased[1]. Communication delays, resource disparities, and uneven task
allocation among nodes can lead to performance fluctuations or even system failures. In such environments,
accurately identifying and monitoring node states is essential for ensuring stability and optimizing resource
scheduling. Traditional centralized monitoring or single-node optimization strategies are insufficient to
handle non-independent and identically distributed data and time-varying node states. Node state
identification involves not only computational performance but also network load, energy consumption, task
congestion, and model drift. Therefore, building an intelligent, adaptive, and collaborative state
discrimination framework holds significant theoretical and practical value[2].



The integration of artificial intelligence has brought new opportunities for intelligent distributed systems.
Deep learning models can perform nonlinear mappings and temporal dependency modeling in complex
multi-dimensional feature spaces, capturing the hidden structure of node behavior patterns. However, directly
applying traditional models in distributed environments faces major challenges. First, data heterogeneity and
privacy constraints limit the feasibility of centralized training. Second, high communication costs and
inconsistent update frequencies among nodes hinder model convergence and may cause performance shifts.
Third, frequent node state changes require models with continual learning and dynamic adaptation
capabilities. Federated optimization, which enables "local data retention and collaborative model updating,"
has emerged as a promising solution for distributed learning. It protects data privacy while improving model
generalization and stability through collaborative aggregation across nodes[3].
Despite these advantages, federated optimization still faces limitations in real-world applications. Data shifts,
gradient conflicts, and inconsistent parameters across nodes make it difficult for a global model to represent
local node characteristics accurately, reducing both accuracy and robustness. Moreover, task similarities and
differences between nodes often contain valuable structural information. When aggregation relies solely on
parameter averaging, critical features may be diluted or lost[4]. Contrastive learning, a leading self-
supervised approach, can learn discriminative representations by aligning features between positive and
negative sample pairs. Its principle of maximizing similarity between related samples while minimizing the
distance between unrelated ones provides a pathway for unified representation learning in heterogeneous
distributed data. This idea aligns naturally with the goal of federated optimization and offers a new
perspective for addressing conflicts between decentralized features and global consistency[5].
Against this background, combining contrastive learning with federated optimization introduces an
innovative paradigm for distributed node state identification. By embedding contrastive constraints within
each node, the model learns robust local representations. Through global federated aggregation, it achieves
cross-node feature sharing and alignment while maintaining privacy. This mechanism mitigates data
heterogeneity among nodes and enhances model stability under concept drift, abnormal node behavior, and
communication noise. Furthermore, the framework can be extended to multi-task collaboration and dynamic
system management, offering broad adaptability and scalability.
Overall, the distributed node state identification framework that integrates contrastive learning and federated
optimization reflects the evolution of intelligent computing from centralized to collaborative and autonomous
paradigms. Theoretically, it promotes the integration of distributed intelligence learning paradigms.
Practically, it provides new insights for large-scale computing systems, intelligent manufacturing, edge node
monitoring, and autonomous network management. This research deepens the understanding of node
behavior modeling in distributed systems and supports the development of secure, interpretable, and scalable
intelligent systems. As system scale and data complexity continue to increase, this direction is expected to
become a key foundation for intelligent infrastructure and efficient, reliable distributed decision-making.

2. Related work
The problem of node state identification in distributed systems has long been a central topic in intelligent
computing and system management. Early studies mainly focused on centralized monitoring and statistical
modeling. They collected indicators such as CPU utilization, memory usage, and network latency to build
system state models for anomaly detection and resource prediction. However, as system scale expanded and
heterogeneity increased, such centralized approaches exposed several limitations, including high data
transmission overhead, vulnerability to single-point failures, and insufficient real-time performance. To
address these challenges, distributed learning and edge intelligence frameworks have been introduced into
node state modeling. These frameworks enable each node to perform local, data-driven model updates and
feature extraction, thereby reducing dependence on the central node. Despite these advances, heterogeneous
feature distributions and non-independent, non-identically distributed data among nodes still cause issues



such as performance drift, aggregation distortion, and unstable global convergence. These challenges have
become critical bottlenecks that must be overcome in subsequent research[6].
To address the challenges of distributed heterogeneous data, federated learning and federated optimization
have become major research focuses. These methods train models locally on each node and then aggregate
parameters globally, effectively balancing data privacy and communication efficiency. Subsequent research
introduced adaptive weighted aggregation, multi-task collaborative optimization, and personalized federated
models to improve generalization and individual performance under node heterogeneity. However, two main
limitations remain. First, the global model has limited capacity to preserve local structural information,
making it difficult to fully capture semantic differences in the feature space of each node. Second, under
conditions of imbalanced data distribution and significant communication delays, gradient aggregation can
easily fall into local optima or cause parameter oscillations. Therefore, achieving both representational
consistency and discriminative capability under privacy constraints has become a crucial research direction in
federated optimization.
Meanwhile, contrastive learning, an important branch of self-supervised learning, has shown great potential
in distributed settings. Its core idea is to learn highly discriminative and structured latent representations by
contrasting positive and negative sample pairs. Traditional supervised learning relies on large amounts of
labeled data, while contrastive learning can uncover hidden semantic structures without labels by maximizing
the similarity between related samples and minimizing that between unrelated ones. In recent years,
contrastive learning has been widely applied to tasks such as temporal modeling, anomaly detection, cross-
domain representation, and multi-task transfer, demonstrating strong generalization and adaptability. In
distributed system node state identification, this mechanism can enhance the discriminative power of node
representations, reduce feature bias caused by heterogeneous distributions, and improve the model's ability to
distinguish node states with greater robustness[7].
Overall, although federated optimization and contrastive learning have achieved remarkable progress in
privacy preservation and feature representation, respectively, their integration remains in the exploratory
stage. Some existing studies have attempted to embed contrastive learning into federated learning
frameworks to improve global aggregation through cross-node feature consistency constraints. However,
most approaches still suffer from insufficient local information sharing, difficulty in cross-node feature
alignment, and low communication efficiency. In particular, in complex node state identification scenarios,
dynamic system changes, non-stationary data distributions, and asynchronous model updates make it
challenging to effectively combine contrastive constraints with federated optimization strategies. Therefore,
building a distributed node state identification framework that integrates contrastive learning and federated
optimization can bridge the gap between feature consistency and global collaboration, offering a promising
research pathway toward enhancing the reliability and autonomy of distributed intelligent systems.

3. Proposed Framework
3.1 Method Overview
This study proposes a distributed node state discrimination framework combining contrastive learning and
federated optimization to achieve accurate modeling and robust identification of system node states. The
framework comprises four core stages: local feature extraction and representation learning, contrastive
feature constraints, global federated aggregation and optimization updates, and a consistent adaptive control
mechanism. Each node in the system maintains data locality while enhancing the separability of its feature
space using a contrastive learning mechanism and achieves consistent updates of the global model through
federated aggregation. Let there be � nodes in the system, �� be the data distribution of node �, �� be
the corresponding model parameters, and �� be the global model parameters. The overall optimization
objective can be formalized as:
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Here, �� represents the node weight, reflecting the amount of data or the importance of the node. This
optimization process achieves global consistency under privacy constraints, enabling collaborative learning
among nodes. The framework as a whole completes the discriminative modeling of distributed node states
by alternately executing comparative feature constraints and federated aggregation. Its overall model
architecture is shown in Figure 1.

Figure 1. Overall model architecture
3.2 Local node feature modeling and comparison constraint mechanism
In each node, the model first encodes the input sequence �� = {��1,��2, . . . ,���} , and then obtains the
representation vector ℎ� through a temporal embedding layer and a nonlinear transformation. This process
can be represented as:
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To enhance the discriminative power of node representations, this study introduces local contrastive learning
constraints. Let positive sample pairs (ℎ�;ℎ�

+) come from the same node state, and negative sample pairs
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−) come from different nodes or different states. The temperature-scaled contrastive loss function is
defined as follows:
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Where 푠��( ∙ , ∙ ) represents cosine similarity and � is the temperature coefficient. This mechanism can
shorten the distribution distance between nodes of the same type and widen the gap between nodes of



different types in the feature space, thereby providing a stable feature foundation for subsequent federated
aggregation.

3.3 Federated optimization and global aggregation strategies
Global model parameters are aggregated using federated averaging. Let the global model parameters be ��,
and the local parameters uploaded by the nodes be ��. Then, in each round of global updates, the following
aggregation operation is performed:
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Where �� is the number of samples at node �. To mitigate aggregation bias caused by node heterogeneity,
an adaptive learning rate adjustment term is further introduced, making node updates follow the following
form:
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Where �ᘠ�ᘠ�푙 = ��푙푠 + ����� and � are the weight coefficients of the comparison constraints. This
mechanism ensures that the node model can be differentiated and optimized based on local data
characteristics while maintaining global consistency, thereby achieving a more refined state representation.

3.4 Consistent regulation and optimized convergence mechanism
In a multi-node asynchronous update environment, models are prone to parameter drift and feature
dispersion. To ensure overall system consistency and convergence stability, a global consistency constraint
is introduced to minimize the distance between the local and global models in the feature space:
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Where A represents the global feature representation. The final joint optimization objective integrates the
four loss terms of classification, comparison, alignment, and aggregation to form a complete multi-objective
optimization function:
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Where �1,�2,�3 is the adjustment coefficient, used to balance the impact of different loss terms. By
performing joint optimization updates after each round of communication and aggregation, the system
achieves global consistency constraints and accelerated convergence of node-level features, enabling the
distributed system to continuously and stably complete node state determination tasks in dynamic
environments.

4. Experimental Analysis
4.1 Dataset
This study uses the NSL-KDD network intrusion detection dataset as the primary data source to verify the
effectiveness of the distributed node state identification framework under multi-source heterogeneous
features. The dataset is an improved version of the classic KDD Cup'99 dataset, with redundant samples and
duplicate connection records removed, retaining only high-quality network traffic behavior features. It
contains 41 input features, including transport layer protocols, connection duration, service type, error rates,



and traffic statistics, which reflect the differences between normal and abnormal node states. The dataset
labels include normal connections and four types of attacks (DoS, Probe, R2L, and U2R), which can be
mapped to classification tasks representing different node states. This provides rich feature diversity for the
joint modeling of contrastive learning and federated optimization.
In the distributed learning setting, the NSL-KDD dataset is divided into multiple node subsets to simulate
the heterogeneity of data in multi-source environments. Each node contains distinct traffic patterns and
attack ratios. Some nodes include a high proportion of abnormal samples, while others are dominated by
normal traffic. This partitioning effectively represents the non-independent and non-identically distributed
characteristics of nodes in distributed systems and provides representative experimental conditions for
federated optimization strategies. Moreover, since the dataset has been widely used in anomaly detection
and system monitoring research, its standardized feature format facilitates fair model comparisons and
ensures reproducibility.
In addition, the dataset is preprocessed through normalization and class balancing, mapping features into a
fixed-dimensional continuous space for subsequent encoding and contrastive constraint learning. By
aligning feature spaces and modeling inter-node distribution differences, the framework achieves consistent
feature discrimination across nodes while preserving local data privacy. The complex feature associations,
data diversity, and hierarchical labeling structure of NSL-KDD provide a solid foundation for validating the
proposed method's ability to identify node states under dynamic, heterogeneous, and non-stationary
distributions.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method Acc Precision Recall F1-Score
MLP[8] 0.8712 0.8425 0.8264 0.8343

1DCNN[9] 0.8847 0.8579 0.8415 0.8496
LSTM[10] 0.8965 0.8683 0.8530 0.8606

CNN-LSTM[11] 0.9081 0.8797 0.8672 0.8734
BILSTM[12] 0.9175 0.8881 0.8766 0.8823

Transformer[13] 0.9263 0.8972 0.8845 0.8908
Ours 0.9487 0.9254 0.9182 0.9218

As shown in Table 1, with the increasing complexity of model structures and the enhancement of feature
representation capabilities, the performance of node state identification improves continuously. The
traditional MLP model shows relatively low accuracy and recall, mainly because it cannot effectively capture
temporal dependencies or dynamic variations among distributed nodes. It can only perform static feature-
level discrimination. The 1D-CNN achieves certain improvements in local feature extraction and shows
higher feature sensitivity, but it cannot model temporal relationships and global feature consistency across
nodes. As a result, its stability under complex distribution conditions remains insufficient.
When temporal structures are introduced, the performance of LSTM and CNN-LSTM models improves
significantly, indicating that temporal dependency modeling plays a crucial role in node state identification.
The CNN-LSTM combines local convolutional features with temporal memory mechanisms, allowing the
model to perceive both spatial correlations among nodes and the evolution of state transitions. This leads to
better results in recall and F1-score. However, these models still struggle to maintain global consistency when
facing non-independent and non-identically distributed node features and inter-node heterogeneity, which
limits their generalization ability in distributed environments.



Furthermore, BiLSTM and Transformer models exhibit stronger robustness in modeling global dependencies.
BiLSTM captures both forward and backward dependencies of node states through its bidirectional
propagation mechanism, making it more sensitive to state changes. The Transformer, with its multi-head
attention mechanism, enables global feature weighting and dynamic interaction, which significantly improves
overall accuracy and generalization. However, these models still rely on centralized data synchronization in
distributed system scenarios and cannot effectively handle data heterogeneity and communication constraints
among nodes.
In contrast, the proposed distributed node state identification framework that integrates contrastive learning
and federated optimization achieves the best performance across all metrics. This method enhances the
consistency and discriminability of representations through local contrastive feature constraints within nodes.
At the global level, it applies federated aggregation to achieve collaborative optimization across nodes. As a
result, it improves accuracy, recall, and F1-score simultaneously while preserving data privacy. The
outstanding performance demonstrates that the framework can effectively capture implicit relationships
among nodes and achieve robust state recognition in heterogeneous and non-stationary distributed systems. It
provides a new perspective for adaptive monitoring and optimization in distributed intelligent systems.
This paper also presents an experiment on the sensitivity of the weight decay coefficient to the accuracy of
node state discrimination, and the experimental results are shown in Figure 2.

Figure 2. Sensitivity experiment of the weight decay coefficient to node state discrimination accuracy
As shown in Figure 2, the weight decay coefficient has a certain sensitivity to the overall performance of
node state identification. When the weight decay is too small, the model tends to overfit, resulting in poor
generalization across global node distributions. When the weight decay is too large, the model update is
overly constrained, weakening its ability to learn local features and making it difficult to capture subtle
dynamic differences among nodes. The experimental results show that when the weight decay coefficient is
set to 1×10⁻⁴, all evaluation metrics reach a relatively optimal balance. At this point, the model avoids
overfitting while maintaining strong feature representation capability and stable convergence performance.

In terms of accuracy, the model shows a gradual improvement in the smaller decay range (1×10⁻⁵ to
5×10⁻⁵). It reaches its peak performance in the moderate decay range, after which accuracy slightly
decreases as the constraint becomes stronger. This indicates that a moderate parameter penalty helps the
model form a more discriminative embedding space during the contrastive learning stage. As a result, the
state features among the nodes remain more consistent in the global representation. However, an excessively



large decay restricts gradient updates and limits the model's ability to adapt to non-stationary node state
changes.
From the variation trends of precision and recall, both metrics show strong synchronization near the optimal
point. With a reasonable increase in weight decay, the model's ability to distinguish positive and negative
samples improves. This suggests that contrastive learning enhances positive sample aggregation and negative
sample separation within local nodes. When the decay becomes too large, the model becomes overly
smoothed in the local feature space, reducing its ability to discriminate boundary samples, which in turn
decreases recall. This result confirms that the proposed framework effectively balances feature constraints
and global consistency.
Considering the F1-score results, the model achieves its best overall performance when the weight decay
coefficient is 1×10⁻⁴. This indicates that under this configuration, the collaborative effect between federated
optimization and contrastive learning modules is strongest. The model not only maintains feature
discriminability among nodes but also achieves a unified representation space through global aggregation.
The overall findings demonstrate that an appropriate weight decay effectively balances model complexity and
generalization, enabling stable and high-accuracy node state identification in heterogeneous distributed
environments.
This paper further analyzes the impact of the temperature parameter in contrastive learning on model
performance, as shown in Figure 3. Specifically, it examines how different temperature values influence
feature similarity distribution, optimization stability, and representation discrimination within the contrastive
space. The results demonstrate that the temperature parameter plays a critical role in balancing intra-class
compactness and inter-class separability, directly affecting the accuracy and robustness of node state
discrimination in the distributed learning framework.

Figure 3. Compare the effects of temperature parameters on experimental results
As shown in Figure 3, the temperature parameter in contrastive learning has a significant impact on the
overall performance of node state identification. When the temperature is too low (for example, 0.03), the
model forces samples too close together in the feature space. This reduces inter-class separability and affects
both classification accuracy and feature stability. As the temperature increases appropriately, the contrast
tension among features becomes stronger, allowing the model to form clearer boundaries between similar
samples. This leads to improved performance across all metrics. When the temperature reaches 0.07, both
accuracy and F1-score achieve their highest values, indicating that the balance between positive and negative



sample similarity is optimal. At this point, the model maintains compact feature representations while
achieving good global separability.
From the trends of precision and recall, it can be seen that temperature adjustment plays a key role in
balancing model overfitting and excessive feature separation. A lower temperature causes positive and
negative pairs to cluster too tightly in high-dimensional space, making it easy for the model to confuse
boundary samples. Conversely, an excessively high temperature introduces noisy features, leading to
insufficient aggregation of positive samples. The results show that within the range of 0.05 to 0.09, the
precision and recall curves rise and fall almost synchronously. This indicates that within this range, the model
can effectively balance feature discrimination and generalization, thereby improving the stability of node
state recognition.
Overall, an appropriate temperature parameter can significantly enhance the discriminative power of the
contrastive learning module, enabling more stable representation learning in distributed environments. When
the temperature is too low, the feature distribution becomes blurred, making it difficult to distinguish node
differences. When the temperature is too high, the consistency of the feature structure is disrupted, reducing
the generalization ability. The experiments demonstrate that selecting a suitable temperature parameter
strengthens the model's balance between global consistency and local diversity under heterogeneous node
features, thereby improving the overall accuracy and robustness of node state identification.
This paper also presents the impact of communication delay on the experimental results, which are shown in
Figure 4.

Figure 4. The impact of communication delay on experimental results
As shown in Figure 4, communication delay has a clear negative impact on the performance of distributed
node state identification. As the delay increases, all evaluation metrics show a downward trend. When the
delay rises from 0 ms to 200 ms, both accuracy and F1-score decline significantly. This indicates that
asynchronous communication causes instability in parameter aggregation and delays in local updates,
weakening the consistency of the global model. When the delay exceeds 400 ms, the performance drop
becomes more severe, suggesting that federated optimization can no longer effectively synchronize gradient
information across nodes. As a result, the global feature representation deviates from the optimal distribution.
This phenomenon confirms the dual impact of communication delay on the convergence speed and stability
of model training in distributed systems.
From the variations in precision and recall, it can be observed that under low-delay conditions, information
exchange between nodes is sufficient. The model can accurately distinguish node states and maintain high
classification precision. As the communication delay increases, some nodes update more slowly, leading to
instability in the global model when identifying boundaries and noisy samples. This imbalance in



asynchronous updates causes overfitting on certain nodes and underfitting on others, reducing the overall
recall. These results show that in asynchronous environments, delay affects not only gradient synchronization
but also the structural balance of the feature space, which further impacts the model's generalization
performance.
Overall, this experiment demonstrates that communication delay is a key factor affecting the stability of
federated optimization. Under moderate delay, the model can still maintain high performance, but when the
delay exceeds the system's adaptive threshold, global consistency drops sharply. The proposed framework
maintains a relatively stable performance curve under these conditions, benefiting from the enhanced local
feature robustness provided by the contrastive learning module and the adaptive update mechanism in global
aggregation. By incorporating consistency regulation and delay-aware optimization mechanisms, the
framework can further improve robustness and generalization in high-delay distributed environments,
providing practical guidance for real-world system deployment.
This paper also presents an experiment on the sensitivity of noise injection intensity to the experimental
results, and the experimental results are shown in Figure 5.

Figure 5. Sensitivity experiment of noise injection intensity to experimental results
As shown in Figure 5, the intensity of noise injection has a clear negative impact on the performance of node
state identification. As the noise ratio increases, all performance metrics show a downward trend, with
accuracy and F1-score declining most significantly. When the noise level is low (0%–3%), the model
maintains high stability and classification accuracy, indicating that the contrastive learning mechanism can
effectively suppress feature deviation caused by noise disturbance at this stage. However, when the noise
intensity exceeds 5%, the feature space becomes disrupted, the semantic consistency between nodes weakens,
and the model can no longer maintain clear boundaries between normal and abnormal states. As a result,
overall performance drops sharply.
From the trends of precision and recall, it can be observed that noise injection causes instability in the feature
distribution, reducing the model's ability to distinguish between positive and negative samples. When the
noise level is low, feature representations remain relatively compact, and recall is slightly higher than
precision, meaning the model can still capture most abnormal nodes. In high-noise environments, excessive
disturbance blurs the feature clustering boundaries, and precision decreases significantly, indicating a higher
false detection rate when identifying abnormal nodes. This feature drift reflects the destructive effect of noise
on the structure of the contrastive learning embedding space. It also highlights the importance of data quality
at distributed nodes for the convergence of the global model.



Overall, this experiment shows that noise intensity is one of the key factors affecting the accuracy of
distributed node state identification. Low-intensity noise can be absorbed by the model's adaptive
regularization, with limited impact on performance. High-intensity noise, however, leads to local feature
distortion and global aggregation deviation, weakening the stability of federated optimization. The proposed
framework maintains a relatively smooth decline in performance even under high-noise conditions,
benefiting from the robustness of contrastive feature learning and the effectiveness of the consistency
regulation mechanism. These results indicate that the model retains strong resistance to perturbations and
good generalization when dealing with noisy and heterogeneous distributed data.

5. Conclusion
This study proposes an intelligent identification framework that integrates contrastive learning and federated
optimization to address the complexity and heterogeneity of node state identification in distributed systems.
The method introduces feature contrast constraints within local nodes to enhance model consistency and
robustness. At the global level, it applies a federated aggregation mechanism to achieve collaborative
optimization across multiple nodes, thus balancing privacy protection and performance improvement.
Experimental results show that the proposed framework demonstrates superior stability and generalization
under various sensitivity conditions. It maintains convergence and accuracy of the global model effectively
under communication delay, noise interference, and hyperparameter variations. The findings confirm that the
integrated learning mechanism significantly improves the system's adaptability to dynamic node features
under heterogeneous and non-stationary data distributions.
From an application perspective, the proposed method holds significant value for intelligent computing,
cloud-edge collaboration, and adaptive system management. By combining the feature constraints of
contrastive learning with the collaborative update mechanism of federated optimization, the model achieves
global information sharing under data isolation while maintaining efficient state recognition performance
with privacy protection. This design can be widely applied to tasks such as distributed anomaly detection,
edge device health monitoring, financial risk identification, intelligent manufacturing networks, and dynamic
scheduling in multi-agent systems. It provides a scalable technical pathway for stable operation and resource
optimization in large-scale complex systems. Moreover, the framework offers new theoretical insights for
building self-learning and adaptive feature selection mechanisms, laying the foundation for collaborative
modeling among distributed intelligent agents.
Future research can further extend this work in the directions of model lightweighting, adaptive
communication strategies, and cross-domain collaborative learning. On one hand, it is possible to reduce
communication and computation costs while maintaining model performance to improve real-time capability
in large-scale distributed scenarios. On the other hand, dynamic temperature adjustment and multi-level
feature contrast mechanisms can be explored to enhance model adaptability under non-stationary and drifting
environments. In addition, integrating this framework with reinforcement learning and graph neural networks
can enable more fine-grained node dependency modeling and cross-network collaborative optimization. With
the rapid development of distributed intelligent systems, the concepts and outcomes of this study are expected
to provide strong support for the next generation of robust, interpretable, and adaptive distributed learning
systems.
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