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Abstract: This study proposes a metric anomaly detection method that integrates multi-scale temporal
modeling with structure-aware feature representation to address the operational demands of microservice
architectures in modern cloud-native environments. The approach is designed to tackle challenges such as
large system scale, complex dependencies, high-dimensional data, and diverse anomaly patterns. Unlike
traditional detection techniques that rely on single time-series signals or static features, the proposed method
jointly models inter-service invocation relationships and multidimensional temporal features to construct a
unified representation space capable of capturing cross-service contextual dependencies, enabling highly
sensitive detection of collaborative anomalies and propagation patterns. The model incorporates a multi-
scale time-series embedding module to capture the interaction between long-term trends and short-term
fluctuations, while the structural modeling component uses a graph convolution mechanism to represent
topological dependencies among services. A contextual fusion layer further integrates temporal information
and structural semantics dynamically, generating anomaly representations with global consistency and
context awareness. During evaluation, comprehensive analyses are conducted on hyperparameter sensitivity,
environmental adaptability, and the impact of data quality, demonstrating the model's stability and
robustness in scenarios with missing data, noise interference, and workload fluctuations. Experimental
results show that the proposed method outperforms representative detection models across multiple
performance metrics, significantly improving alert accuracy, detection efficiency, and global separability,
and providing a practical solution for automated monitoring and intelligent operations in microservice
systems.
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1. Introduction
Microservice architecture has become a fundamental direction in the evolution of modern software systems.
It serves as the backbone for internet services, enterprise platforms, and cloud-native applications. Compared
with traditional monolithic architectures, microservices significantly improve system maintainability and
scalability through high modularity, independent deployment, and elastic scaling. However, this
decentralized design also introduces unprecedented operational complexity. Hundreds of service instances
interact asynchronously to form a highly dynamic system ecosystem, where system states are influenced by
multidimensional metrics and multi-layer dependencies. In this context, the stability of performance metrics
is not only crucial for service quality (QoS) and user experience (QoE) but also directly affects system
availability, elastic scheduling, and resource optimization. Therefore, achieving efficient metric anomaly



detection in large-scale, dynamic, and complex microservice environments has become a key research topic
in the field of AIOps[1].
Metric monitoring in microservice scenarios differs fundamentally from traditional systems, with its primary
challenge arising from the diversity and dynamics of the data. Each service instance continuously generates a
large volume of metrics related to performance, resources, networks, and call chains. These metrics are
collected in a distributed manner and may exhibit inconsistent sampling frequencies, time delays, and diverse
anomaly patterns. In addition, complex service interactions mean that the fluctuation of a single metric may
originate from a local bottleneck or cascade through inter-service dependency chains. Such multi-source,
multidimensional, and multi-granularity time-series characteristics make traditional statistical or rule-based
detection methods insufficient, especially under non-stationary distributions, concept drift, or noise
interference. Addressing these challenges requires models capable of capturing contextual dependencies
among metrics and identifying potential collaborative anomaly patterns, which has become a central
difficulty in anomaly detection model design.
Furthermore, the definition and manifestation of anomalies in microservice systems are highly uncertain and
diverse. Traditional anomalies are often characterized by abrupt changes, shifts, or trend drifts. In
microservice environments, anomalies may present as single-point events such as CPU spikes or sudden
increases in response time[2]. They may also manifest as distribution shifts, behavioral changes, or
collaborative anomalies across multiple metrics. These complex anomaly patterns often hide in high-
dimensional data spaces and long-term dependencies, making them difficult to detect with simple thresholds
or univariate analyses. At the same time, normal business workloads are highly dynamic, which further
increases the difficulty of anomaly discrimination. This imposes stricter requirements on the robustness,
adaptability, and generalization ability of detection models, driving research toward intelligent approaches
that can autonomously learn anomaly semantics from complex backgrounds.
From a system operations perspective, metric anomaly detection is not only the starting point for problem
awareness but also the foundation for ensuring service continuity, optimizing resource allocation, and
enabling self-healing mechanisms. Timely and accurate detection can trigger early warnings and
interventions before anomalies spread, preventing performance degradation, service interruptions, or resource
waste[3]. Analyzing historical anomaly patterns also provides valuable decision support for system evolution,
such as optimizing scheduling policies, capacity planning, and automatic scaling strategies. With the growing
adoption of cloud-native technologies and DevOps practices, automated and intelligent anomaly detection
capabilities are becoming essential for continuous delivery and elastic operations. They enhance system
observability and controllability and lay the groundwork for future autonomous and self-evolving systems.
More importantly, the widespread adoption of microservices is shifting anomaly detection from a "single-
service perspective" to a "system-wide perspective." In complex scenarios involving multi-tenant sharing,
heterogeneous resource collaboration, and cross-regional deployment, single-point metric anomalies are no
longer sufficient to represent the overall system health. The research focus is shifting toward understanding
the intrinsic relationships among metrics and the mechanisms of anomaly propagation to achieve precise
perception and root-cause localization at the system level. This trend places higher demands on the semantic
representation and structural modeling capabilities of detection models and opens new directions for building
intelligent operations systems. By integrating machine learning, deep representation learning, and graph-
based modeling, anomaly detection is evolving from data-driven passive perception to knowledge-driven
proactive decision-making, providing a solid foundation for the adaptability and intelligence of large-scale
systems[4].



2. Related work
With the widespread adoption of microservice architecture and the rise of large-scale distributed systems,
metric anomaly detection has gradually become an important branch of intelligent operations research. Early
studies mainly focused on traditional statistical methods and rule-based detection strategies. These methods
typically identify anomalies in performance metrics through statistical features such as mean, variance,
sliding windows, or control charts. They are simple to implement and highly interpretable, and they show
acceptable performance in static or low-dynamic systems. However, they face significant limitations in
microservice scenarios. First, system metrics often exhibit nonlinear and non-stationary characteristics, and
traditional approaches fail to capture complex temporal dependencies. Second, multidimensional and multi-
granular data are intertwined in microservices, and anomalies may not manifest as abrupt changes in a single
metric but instead hide within collaborative patterns across multiple variables, leading to degraded detection
performance. Moreover, manual configuration of thresholds and rules requires extensive domain knowledge
and continuous maintenance, making it difficult to adapt to highly dynamic and rapidly evolving
environments[5].
With the advancement of machine learning, researchers have begun exploring data-driven anomaly detection
models that automatically learn metric distribution characteristics and anomaly patterns through supervised,
semi-supervised, or unsupervised approaches. Traditional machine learning models, such as clustering,
support vector machines, and isolation forests, can partially mitigate the limitations of threshold settings and
improve the recognition of complex anomaly patterns. However, these approaches typically rely on static
feature extraction and have limited capability to capture temporal dependencies and contextual changes. In
scenarios with high dimensionality, long sequences, and heterogeneous data sources, feature engineering
becomes expensive and often leads to information loss. Furthermore, the scarcity of anomaly samples and
class imbalance in microservice systems also limit the performance of supervised models, driving research
toward unsupervised and self-supervised methods that are more suitable for unlabeled data[6].
In recent years, the introduction of deep learning has significantly advanced the field of metric anomaly
detection. Architectures such as recurrent neural networks, convolutional neural networks, and attention
mechanisms have shown strong capabilities in modeling time-series data and complex dependencies. These
methods can automatically extract deep semantic features from raw metric data, capture both short-term
fluctuations and long-term trends, and represent nonlinear patterns in high-dimensional spaces, thereby
improving detection accuracy and robustness. At the same time, the application of generative approaches,
including variational autoencoders, autoregressive models, and generative adversarial networks, enables more
precise modeling of normal behaviors and identification of abnormal deviations[7]. However, these deep
models still face challenges in handling concept drift, distribution shifts, and cross-service dependencies.
Their training often requires significant computational resources and time, and their "black-box" nature
reduces interpretability and auditability in operational scenarios, limiting large-scale deployment in industrial
environments.
In the latest research trends, increasing attention is being paid to incorporating microservice-specific
structural information and contextual semantics into anomaly detection frameworks. System dependency
graphs, call chain relationships, and joint modeling of multidimensional metrics are now being integrated into
detection models. Such approaches often leverage graph neural networks, spatiotemporal attention
mechanisms, or multimodal fusion strategies to combine metric evolution with structural topology and build
context-aware anomaly detection models. By modeling service interaction relationships, systems can more
accurately locate root causes of anomalies, identify cascading fault patterns, and achieve global anomaly
awareness across services. Meanwhile, adaptive learning, transfer learning, and online update mechanisms
have become key research directions to enhance model generalization and long-term applicability in dynamic
environments with evolving data distributions. This evolution marks a shift in metric anomaly detection from
"point-level perception" to "system-level cognition" and lays the technical foundation for building more
intelligent and autonomous operational systems[8].



3. Method
This study proposes a metric anomaly detection approach for microservice architectures, with the core idea of
jointly modeling multidimensional performance metrics, contextual dependencies, and structural
relationships to accurately identify anomaly patterns in highly dynamic and complexly coupled system
environments. The method first performs multi-scale feature representation on raw time-series metrics to
capture the evolutionary relationships between short-term fluctuations and long-term trends. It then employs
a contextual modeling mechanism to characterize cross-service dependency structures and map the potential
semantic relationships among metrics into a unified representation space. Finally, an anomaly scoring
function is introduced to quantify the deviation between the predicted distribution and the observed data,
enabling anomaly detection and localization. This approach balances representation capability, discriminative
power, and scalability, providing a solid technical foundation for intelligent operations in large-scale
microservice systems. The model architecture is shown in Figure 1.

Figure 1. Overall Model Architecture

In the feature modeling phase, the system first represents the input multidimensional time series indicators as
a time series signal sequence  Tttx 1 of length T , where the indicator vector at each moment is recorded as
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t Rh  represents the moment representation in the embedding space.

To further model dependencies in the time dimension, a context aggregation function is introduced to
perform nonlinear fusion of representations at different time steps. By weightedly combining temporal
representations through the self-attention mechanism, short-term and long-term dynamic dependencies can be
captured:

The attention weight ti is calculated by a mapping function that takes into account the query, key, and
value:



Here, qW and hn dd
k RW  are learnable projection matrices used to calculate the similarity weights within

the sequence, ensuring that the model can dynamically focus on key time segments and indicator changes.

In the cross-service dependency modeling phase, considering the complex call relationships and structural
coupling between microservices, this study considers the system as a directed graph  EVG , , where V
represents the set of service nodes and E represents the set of dependency edges. Based on the graph
convolution mechanism, information within the structural neighborhood can be aggregated to obtain a
service-level contextual representation:

Where )(vN is the neighbor set of nodes v , vuc is the normalization coefficient, gW is the graph
convolution weight, and )( is the nonlinear activation function. This step can effectively integrate service
interaction relationships and provide structured contextual information for anomaly detection.

Finally, to achieve anomaly determination, an anomaly scoring function based on reconstruction error is
constructed to evaluate the degree of anomaly by measuring the degree of deviation between the predicted
representation tx̂ and the true observation tx :

When tS exceeds a preset threshold, the system determines that abnormal behavior exists at that moment.
This scoring mechanism not only quantifies single-point anomalies but can also be extended to detect multi-
indicator collaborative anomalies, providing an interpretable numerical basis for anomaly identification in
complex systems.

Overall, the proposed method constructs a complete detection pipeline through four key steps: multi-scale
feature extraction, temporal context modeling, structural dependency awareness, and anomaly quantification.
It fully leverages the dynamic, relational, and structural characteristics of metrics in microservice
architectures, achieving end-to-end modeling from raw data to anomaly detection. This approach provides a
scalable, robust, and semantically aware solution for intelligent monitoring and reliable operations in large-
scale systems.

4. Experimental Results
4.1 Dataset
This study uses the Kubernetes_Resource & PerformanceMetricsAllocation dataset as the data foundation
for model validation. The dataset records various resource usage and performance metrics from Kubernetes
clusters, including CPU utilization, memory usage, network throughput, and I/O read and write rates. It
contains multidimensional time-series features collected in a multi-tenant environment that simulates
resource competition and workload variations, effectively reproducing the dynamic behavior of resources
and performance in microservice systems. This dataset is representative in the research fields of cloud
computing performance optimization and anomaly detection.



During data usage, we first divide the dataset into multiple consecutive time windows, with each segment
containing resource metric sequences from several services or containers within that period. We then
preprocess each time-series sample through operations such as missing value imputation, normalization, and
smoothing filters to prepare the data for model input. Sample labels can be constructed or mapped according
to the anomaly detection tasks, such as resource spikes, performance degradation, or contention anomalies,
to support model training and evaluation.

This dataset aligns well with the objectives of this study in several ways. First, its high-dimensional and
multidimensional resource metrics capture the complexity of microservice systems under resource
competition and performance fluctuations. Second, because the data originates from a real Kubernetes
cluster, it provides a realistic system context and is closer to real-world environments. Finally, the dataset
offers a suitable sample size and rich feature dimensions, meeting the evaluation needs for model
generalization, robustness, and anomaly discrimination. Experiments based on this dataset effectively
validate the applicability and effectiveness of the proposed model in microservice architecture scenarios.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Table 1: Comparative experimental results

Model F1 AUROC Precision Detection Latency (ms)

MTAD-GAT [9] 0.81 0.94 0.79 62.0

GDN [10] 0.84 0.95 0.82 58.0

TranAD [11] 0.88 0.97 0.86 49.0

Ours 0.91 0.98 0.90 42.0

From the overall trend, classical methods based on graph attention and temporal modeling form a clear
performance hierarchy in microservice metric anomaly detection. The F1 scores of MTAD-GAT and GDN
are 0.81 and 0.84, respectively. TranAD further improves to 0.88, while the proposed method reaches 0.91.
This result indicates that in scenarios with both multidimensional metrics and cross-service dependencies,
pure temporal or graph-based modeling still suffers from fragmented information. By unifying them into a
joint contextual representation, the model can more effectively capture the collaborative anomaly patterns in
both temporal and structural dimensions, thus improving overall discriminative ability (F1) without
increasing the false positive rate.
From the perspective of the threshold-independent AUROC metric, the baseline gradually improves from
0.94 (MTAD-GAT) to 0.97 (TranAD), showing that attention mechanisms bring consistent gains in modeling
long-range dependencies. Our method achieves an AUROC of 0.98, indicating better separability between
normal and abnormal samples across different thresholds. This is highly relevant to the non-stationary loads
and concept drift in microservice environments. When anomalies manifest as interval shifts or cross-service
propagations rather than single-point spikes, joint contextual modeling provides more evidence for decision
boundaries, reducing sensitivity to thresholds and improving robustness across scenarios and time periods.
The comparison of precision and latency further demonstrates the practical engineering value. Precision
increases step by step from 0.79 (MTAD-GAT) to 0.86 (TranAD) and finally to 0.90 (ours), indicating that
false positives on boundary samples are effectively suppressed in highly dynamic environments. At the same
time, detection latency decreases from 62 ms to 42 ms, showing that our method achieves a faster alert loop
through optimized feature extraction and detection head design. This "high precision and low latency"
combination is particularly important for microservices. When anomalies propagate quickly along



dependency chains, shorter detection latency can significantly reduce the risks of cascading degradation and
resource waste.
A comprehensive analysis of all four metrics reveals the key reasons why our method outperforms three
representative baselines. Multi-scale temporal embedding captures the combined effects of short-term
fluctuations and long-term trends. Structural representation introduced by the dependency graph explicitly
aligns causal propagation paths across services. Joint contextual representation mitigates the mismatch
between temporal and structural information. The detection head enhances boundary separation for
collaborative anomalies in the scoring space. For microservice operations, this translates into more reliable
early warning, more stable threshold strategies, and more controllable response windows, providing a
stronger signal foundation for elastic scaling, capacity planning, and self-healing mechanisms.
This paper also conducts comparative experiments on the hyperparameter sensitivity of embedding
dimension and number of graph convolution layers to joint context representation. The experimental results
are shown in Figure 2.

Figure 2. Hyperparameter sensitivity analysis of embedding dimension and number of graph convolution
layers on joint context representation

From the overall trend, increasing the embedding dimension from 64 to 128 while maintaining two graph
convolution layers (E128-L2) yields the most significant performance gain. Both F1 and Precision improve
simultaneously, and AUROC reaches its peak, indicating that joint contextual representation at this capacity
best captures both short-term fluctuations and cross-service dependencies. For microservice metrics, this
means that the correlations between multidimensional indicators and invocation topology are fully unfolded
in a moderately sized embedding space, which enhances the separability of anomalous segments in the
representation space and reduces sensitivity to threshold settings.
When the number of graph convolution layers is further increased under the same embedding dimension
(E128-L3), classification-related metrics show a slight decline, and detection latency increases from 42 ms to
45 ms. This suggests that overly deep structural propagation introduces feature over-smoothing and
additional computational overhead. Given that microservice dependency graphs are often sparse and
heterogeneous, excessive neighborhood aggregation can dilute the discriminative power of key dependency
edges, smoothing out the "sharp boundaries" of cross-service anomaly propagation and weakening the
discriminative strength of the joint representation on boundary samples.
Further increasing the embedding dimension to 192 (E192-L2/L3) does not bring continued benefits. F1,
Precision, and AUROC all decrease slightly compared with E128-L2, while latency continues to increase.
This indicates that under the constraints of signal-to-noise ratio and sample size in microservice metrics, an
excessively large representation space introduces redundant degrees of freedom, causing the model to overfit
local fluctuations and noise patterns. Combined with deeper graph layers, this effect intensifies over-
smoothing and overfitting, resulting in reduced global separability and inference efficiency.



A cross-metric comparison reveals that AUROC responds more smoothly to capacity changes, reflecting its
threshold-independent robustness. Precision and F1 are more sensitive to marginal changes in structural depth
and embedding size, directly reflecting the trade-off between false positives and false negatives. Latency
increases monotonically with capacity and layer depth, forming a practical engineering constraint. Therefore,
in microservice anomaly detection scenarios, it is preferable to adopt a "moderate embedding and shallow
layers" configuration, such as E128-L2. This configuration ensures sufficient modeling of cross-service
dependencies while keeping the detection loop within a low-latency range, thereby narrowing the propagation
window of cascading failures.
This paper also analyzes the hyperparameter sensitivity of the anomaly score threshold and temperature
coefficient to the precision-recall trade-off. The experimental results are shown in Figure 3.

Figure 3. Hyperparameter Sensitivity Evaluation of Anomaly Scoring Threshold and Temperature
Coefficient on Precision-Recall Tradeoff

From the overall trend, as the anomaly scoring threshold gradually increases, Precision shows a steady
upward trajectory, while Recall continuously decreases, reflecting the inherent trade-off between false
positives and false negatives in detection models. When the threshold is low, the model is more sensitive to
potential anomalies and can capture more abnormal instances, but this comes at the cost of a higher false
positive rate. When the threshold increases, the decision criterion for anomalies becomes stricter, resulting in
a clear improvement in Precision. However, some boundary samples are misclassified as normal, leading to a
decline in Recall. This asymmetric pattern indicates that the proposed method can adaptively optimize for
different detection objectives in microservice environments through threshold adjustment, thus balancing the
requirements of alert accuracy and coverage in operational scenarios.
The F1 curve reaches its peak in the middle threshold range, indicating that Precision and Recall achieve an
optimal balance around this point, representing the best overall performance of the model. For microservice
systems with complex multidimensional metric interactions and diverse anomaly propagation mechanisms,
this result is significant. The location of the F1 peak reveals the capability boundary of the joint contextual
representation in modeling cross-service dependencies and multidimensional anomaly patterns. It also
provides a reference for subsequent automatic threshold search and dynamic alert strategies. Particularly
when the system experiences workload fluctuations or concept drift, this optimal threshold point can maintain
stable detection performance, reducing the risks of false positive accumulation and false negative propagation.
From the perspective of the AUROC curve, it remains consistently high and shows only minor fluctuations
across different threshold ranges, indicating that the model's discriminative power is not sensitive to specific
threshold settings. This demonstrates that through multi-scale contextual fusion and structure-aware feature
modeling, the model can stably distinguish between normal and abnormal states at a global level, with strong
generalization and robustness. In highly dynamic microservice scenarios, such threshold-independent



separability is especially crucial, ensuring that even when anomaly patterns shift or data distributions change,
the model maintains strong detection capability.
Further analysis of the impact of the temperature coefficient shows that temperature adjustment slightly
affects the variation of Precision and Recall, but does not change the overall trend. A lower temperature
coefficient enhances the model's ability to identify high-confidence anomalies, slightly increasing Precision.
A higher temperature is more beneficial for recalling sparse or weak-signal anomalies. For microservice
metric anomaly detection tasks, this indicates that the model's output distribution is highly tunable. It allows
the detection sensitivity and risk tolerance to be dynamically adjusted according to operational policies,
providing a more flexible alert mechanism for different business priorities.
Finally, this study evaluated the data sensitivity of the missing rate and noise ratio to the quality of
multidimensional indicator representation. The experimental results are shown in Figure 4.

Figure 4. Data sensitivity assessment of missing rate and noise ratio on the quality of multidimensional
indicators

As the missing rate increases from 0.00 to 0.30, F1 drops from 0.91 to 0.82, while AUROC decreases more
slowly from 0.98 to 0.952, showing a pattern where threshold-dependent metrics decline faster while
threshold-independent metrics remain more stable. This indicates that even when data integrity is
compromised, the joint contextual representation can still maintain high global separability. However,
missing data breaks the continuity of temporal dependencies and structural paths, making boundary samples
more susceptible to threshold effects and misclassification. For microservice metrics, missing values weaken
the continuous evidence of anomalies along the call chain. The insufficient accumulation of temporal-
structural evidence directly manifests as a faster decline in F1.
The nonlinear effect of missing data shows that metric changes remain relatively mild below a 0.10 missing
rate, but F1 declines more sharply beyond 0.20, suggesting the existence of a "collapse threshold" for
evidence. When gaps between observations grow large enough to span critical dependency edges or key time
segments, the trajectory of anomaly propagation is interrupted. This compression of the effective receptive
field for temporal attention and graph convolution makes it difficult for the joint representation to reconstruct
continuous anomaly chains. This phenomenon aligns with the hierarchical dependencies of microservices.
Once missing nodes in the chain exceed the system's redundancy, cross-service collaborative anomaly
patterns can no longer form a closed loop, causing the decision boundary to become fragile.
When the noise ratio increases from 0.00 to 0.30, Precision decreases from 0.90 to 0.80, a sharper drop than
Recall, which decreases from 0.91 to 0.83. This indicates that label noise primarily undermines the
calibration of positive prediction confidence rather than recall capacity. In microservice alerting scenarios,
pseudo-labels or observational errors can misrepresent normal fluctuations as anomalous patterns, leading to
more false positives in high-confidence prediction segments. The decline in Recall is relatively moderate,
suggesting that multi-scale temporal modeling and structural priors still maintain a certain level of coverage.
However, in high-noise conditions, the ability to detect weak anomalies gradually deteriorates.



The engineering implications of the "missing-noise" coupling risk are significant. Missing data primarily
affects the continuity of the evidence chain, which directly impacts F1, while noise primarily affects
confidence calibration, reducing Precision first. The former requires a focus on temporal alignment and graph
structure completion, such as neighborhood-consistency-based masked reconstruction and cross-edge
imputation. The latter requires a focus on uncertainty scheduling and temperature scaling, such as
suppressing low-confidence scores and implementing dynamic threshold fallback. In highly dynamic
microservice environments, anomaly detection frameworks based on joint contextual representation should
address missing data and noise separately at the data input stage. This ensures stability in evidence continuity
and confidence calibration, allowing the system to maintain separability and alert quality under complex
operational conditions.

5. Conclusion
This study proposes a joint contextual anomaly detection method that integrates multi-scale temporal
modeling with structure-aware representation to address the complexity, dynamics, and high dimensionality
of metric anomaly detection in microservice architectures. By jointly modeling temporal dependencies, cross-
service relationships, and contextual interactions, the proposed approach effectively overcomes the
limitations of traditional detection techniques in capturing collaborative anomalies and complex dependency
propagation. It achieves high-precision representation of multidimensional metrics and sensitive detection of
anomaly patterns. Experimental results show that the method outperforms representative baseline models
across multiple key metrics, validating its reliability and applicability in real-world microservice
environments. This design not only improves detection accuracy and alert timeliness but also provides a solid
technical foundation for automated operations and intelligent decision-making in large-scale systems.
The proposed research has significant engineering implications. In the context of cloud-native and large-scale
distributed systems, complex dependencies, dynamic topologies, and non-stationary data patterns among
microservice instances make anomaly detection a critical component of operational systems. The proposed
joint representation framework maintains stable and robust detection performance under multi-source,
multidimensional, and multi-temporal conditions. It also provides valuable contextual information for root
cause localization, elastic scheduling, and self-healing mechanisms. This capability greatly enhances system
observability and automation, enabling a shift from passive alerting to proactive perception. It offers a
practical solution for building highly available and low-risk cloud service platforms.
From both academic and practical perspectives, this work provides a scalable approach to anomaly detection
by deeply integrating temporal behaviors and structural dependencies through a unified contextual
representation mechanism. This idea is not only applicable to microservice metric monitoring but can also be
extended to other multidimensional and complex scenarios, such as large-scale IoT monitoring, edge system
health diagnosis, and cross-domain distributed resource scheduling. More importantly, the proposed
framework serves as a design paradigm for future anomaly detection technologies and lays a theoretical
foundation for the evolution from data-driven to knowledge-driven intelligent operations.
Future research can be further extended in several directions. On one hand, causal inference and
reinforcement learning techniques can be incorporated to proactively model anomaly propagation chains and
system behavior evolution, enhancing the system's adaptability to unknown patterns. On the other hand,
integration with federated learning and privacy-preserving computation can be explored to enable secure and
efficient operation in multi-tenant and collaborative environments. Furthermore, with the advancement of
generative AI and large-scale models, future anomaly detection frameworks are expected to possess
autonomous interpretation and policy generation capabilities, providing end-to-end intelligent support from
detection to intervention and driving cloud-native operations toward a more autonomous and intelligent era.
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