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Abstract: This study addresses the complexity and uncertainty of agent planning and decision-making in
dynamic environments and proposes a hierarchical large language model agent method for multi-scale
planning. The approach begins with global goal modeling, where the semantic reasoning ability of the
language model generates a global planning vector. A task decomposition mechanism then refines the global
goal into an executable sequence of sub-goals. At the local execution level, the agent employs a policy
network to perform action selection and dynamic adaptation, achieving coordination between global and
local levels. The framework optimizes both global subgoal constraints and local action accuracy, enabling
robust hierarchical planning through joint optimization. To validate the effectiveness of the proposed
method, experiments were conducted under multiple sensitivity scenarios. The results show that the agent
demonstrates strong stability and recovery ability under varying noise intensity, optimizer types, planning
update frequencies, and mutation frequencies and amplitudes, while maintaining task decomposition
accuracy and overall performance in uncertain and dynamic conditions. In addition, sensitivity experiments
on learning rate and weight decay reveal the critical role of hyperparameters in maintaining hierarchical
strategy stability, providing clear guidance for model design and optimization. Overall, the study
demonstrates the advantages of hierarchical large language model agents in multi-scale planning under
dynamic environments and confirms their robustness and adaptability through detailed experimental design
and quantitative evaluation.
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1. Introduction
In today's complex and rapidly changing environment, planning and decision-making for agent systems are
becoming a key focus of artificial intelligence research. With increasing uncertainty in external conditions,
traditional single-scale or static planning methods often struggle to cope with diverse challenges in dynamic
environments[1]. For example, rapid changes in environmental states, progressive task requirements, and
dynamic adjustments of resource constraints all place higher demands on the planning and decision-making
capabilities of agents. Therefore, constructing an architecture that can flexibly adapt and support multi-scale
planning has become a critical issue in advancing artificial intelligence to a higher level. The emergence of
large language models provides a new pathway to this problem. Their strong knowledge representation and
reasoning abilities offer a solid foundation for hierarchical planning and dynamic adaptation[2].
The value of multi-scale planning lies in its ability to model across different temporal and spatial levels,
enabling both strategic and tactical objectives. Traditional planning methods are often confined to a single



layer. They either emphasize long-term goals at the macro level or rely heavily on instant decisions at the
micro level, resulting in a lack of coordination and flexibility in the overall system[3,4]. This limitation
becomes more pronounced in dynamic environments, where uncertainty requires agents to constantly switch
and balance across scales. By introducing hierarchical architectures, large language models can perform
abstract reasoning and global planning at higher levels, while also handling fine-grained dynamic adjustments
at lower levels. This capacity is crucial for improving robustness and adaptability in complex scenarios.
At the same time, hierarchical agents show unique advantages in multi-task and multi-scenario applications.
In real-world problems, planning is rarely about optimizing a single objective. It usually involves parallel task
processing and resource coordination[5,6]. For instance, urban traffic scheduling must balance global flow
optimization with local congestion relief. Collaboration among unmanned systems must align overall task
allocation with individual execution details. Single-layer models find it difficult to meet such requirements. A
hierarchical planning framework powered by large language models can achieve efficient coordination across
tasks and scenarios by setting and decomposing goals at multiple scales. This capability not only extends the
application scope of agents but also provides practical support for solving complex real-world problems.
In dynamic environments, planning is not only about choosing paths but also about information perception,
knowledge integration, and decision adaptation. Large language models, with their rich semantic modeling
abilities, can extract key information, identify hidden constraints, and reason with existing knowledge under
uncertain conditions[7]. A hierarchical architecture strengthens this advantage. It enables high-level
integration of long-term goals and background knowledge, mid-level task decomposition and resource
allocation, and low-level dynamic adjustment and instant response. Such a design enhances the adaptability
of agents in complex environments. It also improves their transferability and generalization across scenarios,
thereby achieving intelligent decision-making in a more complete sense.
In conclusion, multi-scale planning for dynamic environments is not only a technical requirement but also an
important step toward high-level intelligent agents. The integration of large language models provides a new
opportunity for designing and implementing hierarchical agents. It breaks the limitations of traditional
planning frameworks and enables the organic combination of global and local, as well as long-term and
short-term, in dynamic contexts[8]. Research in this direction has deep theoretical significance and will play a
vital role in domains such as autonomous driving, smart cities, robotic collaboration, and complex system
management. Exploring multi-scale planning mechanisms with hierarchical large language model agents can
open new paths for artificial intelligence and build a solid foundation for addressing more complex, uncertain
environments in the future.

2. Related work
In recent years, planning and decision-making for agents have been an important research direction in
artificial intelligence. Early approaches mainly focused on rule-based and search-based methods[9]. These
methods relied on explicit logical rules or predefined search spaces and achieved planning through heuristic
strategies. However, they often faced limitations in dynamic environments and large-scale tasks. They
struggled to adapt to rapid changes in the environment or to meet the requirements of complex task
decomposition. With the development of machine learning, researchers began to combine statistical modeling
with planning. Data-driven approaches enabled more efficient decision processes. Yet, these methods still
showed weaknesses in cross-scenario generalization and multi-level adaptability[10].
The rise of deep learning brought breakthroughs for agent planning. Methods based on sequence modeling
and reinforcement learning allowed agents to learn strategies from large-scale data in dynamic environments.
They also provided a certain degree of adaptability[11]. However, single-level deep models still showed
structural limitations when facing multi-scale tasks. In complex tasks, it was difficult for the models to
balance long-term goals with immediate feedback. This led to a lack of global perspective and flexibility in
planning. To address this, hierarchical reinforcement learning and layered strategies became research



hotspots. These approaches divided tasks and decisions across different levels to connect local and global
goals. Still, they faced clear shortcomings in cross-task transfer and semantic-level understanding.
The emergence of large language models has moved agent research into a new stage. With strong abilities in
semantic understanding, reasoning, and generation, agents can perform higher-level task abstraction and goal
decomposition. This overcomes the limitations of traditional models in semantic representation and
knowledge use. Recent studies have attempted to embed large language models into agent planning
architectures. They support natural language interaction, environment modeling, and multi-task coordination.
As a result, planning is no longer restricted to static strategies but can be dynamically adjusted through
language-driven mechanisms. This combination provides new ideas for solving complex tasks in open
environments. However, further exploration is still needed in hierarchical design and multi-scale
modeling[12].
On this basis, multi-scale planning and hierarchical architectures have gradually become key research
directions. One line of work focuses on how to use the semantic reasoning ability of large language models to
abstract global goals at higher levels, perform task decomposition and resource scheduling at intermediate
levels, and enable fast response and execution at lower levels. Another line of work emphasizes integrating
environmental uncertainty with hierarchical planning to design agents that can adapt to changing conditions
and diverse tasks. These studies indicate that hierarchical large language model agents not only have high
theoretical research value but also demonstrate broad application potential in practice. They lay the
foundation for deploying agents in complex and dynamic environments.

3. Proposed Approach
This study proposes a hierarchical large language model agent approach for dynamic environments. Its core
concept is to integrate global goal modeling, task decomposition, and local execution to achieve multi-scale
planning and dynamic adaptation. The overall model architecture is shown in Figure 1.

Figure 1. Overall model architecture

In the overall framework, the environment state is represented in time series form as:
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agent abstractly models the environment information at a high level through a large language model and
generates a global target vector G, which is represented as:

 

represents the state of the environment at time step t, and d is the dimension of the state. The
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After the goal is generated, the model maps the global goal into a set of sub-goal sequences },...,,{ 21 Kggg
through a hierarchical task decomposition mechanism, which can be specifically expressed as:
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Where 
adaptability of the local level and can be updated as the environment changes.

To achieve effective coordination between global and local, the model designs a hierarchical optimization
objective. First, define the global objective function:
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same time, the optimization goal of the local execution layer is:
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ta is the reference optimal action in the current state, and )(l is the metric function for action

matching. The final joint optimization goal is:
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4. Performance Evaluation
4.1 Dataset
The dataset used in this study is the MineRL Dataset. It is specifically designed for agent research and has
been widely applied in reinforcement learning and planning tasks. The dataset is collected from task
execution in open-world environments and contains diverse states, actions, and reward signals. Its main
feature is the simulation of complex and dynamic settings, which provides rich support for studying multi-
scale planning and hierarchical decision-making. The data include both local immediate feedback and long-
term goal-directed trajectories, making it suitable for evaluating hierarchical reasoning and planning in
dynamic environments.

 

Where C is the contextual knowledge and f LLMrepresents the semantic reasoning function of the 
language model. This step ensures that the global planning can adapt to the complexity and uncertainty in the 
dynamic environment.

 

Where A is the task decomposition function, which ensures that each sub-goal meets the global constraints 
and can be effectively executed in the local environment. Subsequently, the agent makes action decisions 
based on the local state through the policy network, and the action set is expressed as:

 

represents the policy function with parameter  . This mechanism ensures the dynamic

 

is the optimal sub-goal reference representation obtained by language model reasoning. At the

 

Where  1,  2is a weight coefficient that balances the importance of global planning and local execution. 
Through this hierarchical optimization mechanism, the intelligent agent can achieve global and local 
coordination in dynamic environments and effectively adapt to multi-scale task requirements.



The design of the dataset emphasizes multi-task and multi-scenario characteristics. It covers a wide range of
tasks, from basic behaviors such as movement and collection to higher-level goals such as construction and
resource management. This diversity enables agents to adapt and transfer across different levels of
objectives. It not only enhances the representativeness of the dataset but also creates a solid basis for
exploring hierarchical planning mechanisms. In dynamic environments, agents must balance short-term
feedback with long-term returns. The dataset provides cross-scale data support, which allows researchers to
analyze agent behavior at different levels within a unified framework.

In addition, the openness and scalability of the dataset bring further significance. It provides complete state-
action-reward sequences and allows new sub-tasks or composite tasks to be built on top of the original
settings. This flexibility facilitates the study of generalization in multi-scale planning. It also makes the
dataset suitable for testing and comparing a wide range of agent algorithms. In particular, it is well-suited
for exploring the adaptability and robustness of hierarchical large language model agents in dynamic
environments. For these reasons, this study adopts the dataset as the foundation. It not only carries practical
relevance but also ensures that the results can serve as a reference for broader research on agents in dynamic
settings.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method SR AR NS GDA

Agent q[13] 68.3 215 0.62 71.4

Behavioral formation[14] 72.5 238 0.66 74.8

Turbo-IRL[15] 75.1 254 0.71 77.3

Madiff[16] 77.9 269 0.75 80.2

OURS 84.6 298 0.83 86.7

From the results in Table 1, it can be seen that when performing multi-scale planning in dynamic
environments, different methods show significant differences in success rate and average reward. Traditional
Agent q and Behavioral formation show some improvement in overall performance. However, due to the lack
of hierarchical task decomposition, their goal achievement in complex scenarios remains limited. In contrast,
Turbo-IRL and Madiff combine reinforcement learning with imitation learning. They improve stability and
efficiency, but still struggle to maintain advantages in long-term planning and high-level semantic reasoning.
Further observation of the Normalized Score shows that the normalized performance follows the same trend
as cumulative rewards. This indicates that as the modeling ability of agents improves, their adaptability to
environmental changes increases. However, relying only on low-level strategy optimization is not enough to
ensure the stable achievement of global goals. Madiff performs relatively well on this metric, suggesting that
it can capture cross-scale task features to some extent. Yet, it cannot model complex dynamic environments
from a global perspective.
On the GDA metric, OURS shows a clear advantage over other methods. Its goal decomposition accuracy
reaches 86.7 percent, which indicates that the method can decompose global goals into reasonable sub-goals
more effectively and maintain high consistency during execution. This advantage mainly comes from the
semantic understanding and reasoning ability of hierarchical large language models. They enable agents to



integrate environmental information at higher levels and make dynamic adjustments during low-level
execution, thus achieving more efficient task completion.
Considering all metrics, OURS outperforms the baselines in success rate, average reward, normalized
performance, and goal decomposition accuracy. This verifies the effectiveness of hierarchical large language
models in multi-scale planning under dynamic environments. It reflects their advantage in coordinating
between global and local objectives and highlights their adaptability and robustness in handling complex
environmental changes. The results demonstrate that hierarchical agents based on large language models can
provide stronger support for multi-task and multi-scenario planning and hold significant value for advancing
agent applications in real-world dynamic environments.
This paper further presents a sensitivity experiment on the robustness of the environmental noise intensity,
and the experimental results are shown in Figure 2.

Figure 2. Sensitivity experiment of environmental noise intensity on robustness
From Figure 2, it can be seen that as the intensity of environmental noise gradually increases, the robustness
score of the agent shows a clear downward trend. Under 0 percent noise, the agent can fully maintain baseline
performance, indicating stable task planning and execution in the absence of interference. However, when
noise intensity reaches 10 percent and 20 percent, robustness remains at a high level but already shows a
moderate decline. This suggests that environmental disturbances begin to influence the execution of multi-
scale planning.
When the noise intensity rises further to 30 percent, the decline in robustness becomes more pronounced.
This highlights the sensitivity of perception and task decomposition to external interference in dynamic
environments. The trend shows that although hierarchical large language models have advantages in high-
level goal planning, they remain vulnerable in low-level action execution and environmental feedback. The
result indicates that multi-scale architectures require stronger anti-noise mechanisms between task
decomposition and execution to ensure stable performance in complex environments.
At 40 percent and 50 percent noise, the robustness score falls clearly below the baseline. This means that in
highly uncertain and strongly disturbed environments, the overall planning efficiency and goal decomposition
accuracy of the agent face severe challenges. This finding highlights a bottleneck of multi-scale agents in
dynamic contexts, namely, how to maintain stable decision-making at both global and local levels to prevent
rapid performance degradation.
Overall, the results confirm the significant impact of environmental noise on the robustness of hierarchical
large language model agents. Although the agent performs well under low-noise conditions, there is a clear
decline under high-noise scenarios. Enhancing resilience to disturbances through stronger redundancy



mechanisms, dynamic feedback adjustment, and adversarial training is an important direction for future
research. This finding not only reveals the strengths and limitations of current methods but also provides
practical insights for achieving more advanced intelligent planning in complex environments.
This paper also presents a sensitivity experiment on the optimizer type, and the experimental results are
shown in Figure 3.

Figure 3. Sensitivity experiments on optimizer types
From the results in Figure 3, it can be seen that different types of optimizers have a significant impact on
agent performance. The overall trend shows that as the optimizer evolves from traditional SGD to AdamW,
the agent achieves gradual improvement across all metrics. This trend indicates that the optimizer plays a
critical role in training hierarchical large language model agents. It directly affects the stability and
coordination between global planning and local execution.
In terms of success rate, optimizers such as SGD and Momentum can maintain a certain level of task
completion. However, their simple update mechanisms make it difficult to fully exploit the advantages of
multi-scale planning in complex and dynamic environments. With the introduction of RMSProp and Adam,
the success rate improves. This reflects that more flexible gradient adaptation mechanisms help enhance the
adaptability of agents in dynamic scenarios. Finally, AdamW achieves the highest success rate, showing its
advantage in balancing regularization and weight updates.
The changes in average reward and normalized score further support this conclusion. As the optimizer
evolves, the agent shows stronger stability and robustness in reward accumulation and overall performance.
The results of Adam and AdamW are particularly notable. They demonstrate that adaptive optimizers can
significantly improve training efficiency and planning ability when handling high-dimensional parameters
and complex task structures. This allows the model to maintain superior performance in dynamic
environments.
For goal decomposition accuracy, the results also highlight the importance of optimizer choice. SGD
performs relatively poorly on this metric, showing its limitations in supporting complex hierarchical task
decomposition. AdamW performs best, indicating that it can better preserve consistency between global goals
and sub-goals. Overall, these findings emphasize the crucial role of optimizer selection in multi-scale
planning for hierarchical large language model agents in dynamic environments. They provide a strong
reference for designing more efficient training strategies.
This paper also presents a sensitivity experiment on the planning update frequency, and the experimental
results are shown in Figure 4.



Figure 4. Sensitivity experiment on planning update frequency
From the results in Figure 4, it can be seen that planning update frequency has a clear impact on agent
performance. Across the four evaluation metrics, the results show a trend of rising first and then falling. This
indicates that both very low and very high update frequencies lead to performance decline, while a moderate
update frequency helps maintain stability and effectiveness in dynamic environments. This phenomenon
shows that hierarchical large language model agents need proper rhythm control between planning and
execution. It avoids excessive reliance on short-term adjustments or overly slow global updates.
In the sensitivity analysis of success rate and average reward, performance peaks when the update frequency
is set to four steps. Overly frequent updates, such as one step or two steps, cause overfitting to local states and
make it hard to maintain global planning consistency. Sparse updates, such as sixteen steps or thirty-two steps,
weaken the ability of the model to respond quickly to changes in dynamic environments. This shows that a
reasonable update frequency can balance global planning and local execution, improving overall task
performance.
The results of the normalized score also confirm this trend. A moderate update frequency not only enhances
the ability to maintain global performance but also helps the agent adapt better to changes in dynamic
environments. In contrast, low update frequencies cause information lag, leading to loss of flexibility, while
high update frequencies increase the risk of over-adjustment and reduce stability. This shows that update
frequency is critical to maintaining consistency in multi-scale planning.
The results of goal decomposition accuracy further emphasize the sensitivity to planning update frequency.
When updates are too frequent, the stability of sub-goals is affected, leading to reduced decomposition
accuracy. When updates are too sparse, deviations between sub-goals and environmental states accumulate,
also reducing accuracy. Overall, the proper setting of update frequency is not only about coordinating global
and local levels but is also key to ensuring efficient and robust planning in dynamic environments. These
results provide an important reference for optimizing agent algorithms.
This paper also presents an experiment on the sensitivity of the frequency and amplitude of environmental
sudden changes (dynamics shift) to recovery capacity, and the experimental results are shown in Figure 5.
From Figure 5, it can be seen that the frequency of environmental mutation events has a significant impact on
the recovery ability of the agent. When the mutation frequency is low, the agent can return to near-baseline
performance within a short time. This shows that hierarchical large language model agents have strong
adaptability when facing occasional disturbances. However, as the frequency of mutation events increases,



recovery ability declines markedly. This indicates that frequent environmental changes disrupt the rhythm of
multi-scale planning, making it difficult to maintain stable coordination between global and local decisions.

Figure 5. Experimental study on the sensitivity of the frequency and magnitude of environmental dynamics
shift to recovery capacity

In the amplitude sensitivity experiment, it is observed that larger mutation amplitudes lead to weaker
recovery ability. When the amplitude is only 10 percent, the agent still maintains high robustness, showing
that its internal hierarchical mechanisms provide good fault tolerance under mild disturbances. But when the
amplitude rises to 20 percent and above, recovery ability decreases significantly. At 40 percent, performance
drops to a low level, highlighting the difficulty of recovery under drastic dynamic changes.
The results of frequency and amplitude experiments together show that the robustness of the agent depends
not only on its planning ability in static environments but also on its capacity to resist and adapt to
uncertainty in dynamic environments. Frequent disturbances prevent the model from maintaining stable
policy updates. Large-scale environmental changes cause mismatches between high-level goals and low-level
execution, leading to an imbalance in task decomposition and planning. This reveals the importance of
planning updates and feedback mechanisms in dynamic settings.
Overall, the experiments confirm that hierarchical large language model agents have some recovery ability in
dynamic environments, but they still show significant performance degradation when mutation events are
frequent and large in scale. Enhancing stability under high-frequency and high-amplitude mutations requires
stronger redundancy mechanisms, improved memory units, or adaptive scheduling strategies. This finding is
important for improving the robustness of agents in real complex environments.
This paper also presents an experiment on the sensitivity of learning rate and weight decay to the stability of
hierarchical strategies. The experimental results are shown in Figure 6.
From the results in Figure 6, it can be seen that the learning rate has a clear impact on the stability of
hierarchical strategies. When the learning rate is too low, the stability and retention of the agent are reduced.
This shows that small update steps make it difficult for the model to adapt quickly in dynamic environments.
As the learning rate increases to a suitable range, stability improves significantly. It reaches the best level
near 3×10⁻⁴, indicating that this setting allows sufficient exploration while avoiding training oscillation. As
a result, it achieves better hierarchical planning performance.

When the learning rate continues to increase to 10⁻³, stability decreases markedly. This shows that large
update steps easily disrupt the balance within the hierarchical structure, causing misalignment between high-
level goals and low-level execution. This finding indicates that the learning rate not only determines
convergence speed but also directly affects robustness and consistency in multi-scale tasks. Therefore, a
reasonable setting of the learning rate is essential to maintain the stability of hierarchical agents.



Figure 6. Sensitivity experiments of learning rate and weight decay on the stability of hierarchical strategies
In the weight decay experiment, it is observed that moderate regularization improves stability. When weight
decay is 0.00, stability retention is relatively low. Performance peaks near 0.02, showing that moderate
weight constraints help prevent overfitting in dynamic environments. This ensures consistency between
global and local planning. The results indicate that regularization mechanisms not only improve
generalization in hierarchical structures but also enhance robustness under disturbances.
However, when weight decay becomes too large, such as 0.10, stability declines sharply. This shows that
excessive regularization suppresses effective representation of complex environmental features, leading to
reduced coordination between task decomposition and execution. Overall, the sensitivity experiments on
learning rate and weight decay highlight the importance of optimization hyperparameters in training
hierarchical large language model agents. Only when these parameters are set within a proper range can the
model maintain long-term stability and effectiveness in dynamic environments.

5. Conclusion
This study addresses the problem of multi-scale planning in dynamic environments and proposes a
hierarchical large language model agent framework. By combining global goal setting, task decomposition,
and local execution, the method improves adaptability and robustness in complex environments. Unlike
traditional single-layer strategies or models that rely only on low-level execution, this study demonstrates the
advantages of a hierarchical architecture in semantic understanding, long-term reasoning, and short-term
response. As a result, the agent maintains high stability and task completion under uncertain and dynamic
conditions.
Experimental results show that the framework achieves strong stability and recovery ability in multiple
sensitivity scenarios. Whether under environmental noise, optimizer choice, update frequency, or the
frequency and amplitude of environmental mutations, the proposed method demonstrates clear advantages in
robustness and multi-scale planning consistency. This indicates that hierarchical large language model agents
can resist disturbances while maintaining coherence and accuracy in task execution across diverse conditions.
Sensitivity experiments on different hyperparameters further confirm the key considerations in design and
tuning, providing valuable practical insights for future research.
From an application perspective, the findings have potential impact in several domains. In autonomous
driving and intelligent traffic scheduling, hierarchical large language models can better coordinate global path
planning with local obstacle avoidance, improving safety and flow. In intelligent manufacturing and robotic
collaboration, task decomposition and recovery abilities allow efficient operation in complex production
processes. In smart cities and public safety management, multi-scale planning mechanisms in dynamic



environments support resource optimization and emergency response, providing reliable support for large-
scale intelligent systems.
In conclusion, this study enriches the theoretical research on combining hierarchical agents with large
language models and demonstrates their feasibility and superiority in dynamic environments. By introducing
multi-level planning mechanisms and sensitivity analysis methods, the work lays a foundation for improving
the generalization, stability, and practical value of agents. These contributions provide solid support for
deploying agents in complex open environments and create a positive impact for the application of intelligent
decision systems in critical domains.
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