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Abstract: This paper proposes a graph neural network-based algorithm for default risk identification in
enterprise credit relationship networks, addressing the challenges of complex dependency structures and
multi-source feature integration. The method constructs a graph representation based on enterprise guarantee
relationships, integrating node-level information such as financial attributes, registration details, and credit
labels. A multi-layer graph convolutional network combined with a multi-head attention mechanism 1is
employed to capture structural dependencies and aggregate features. The model architecture comprises a
graph embedding and a classification module for performing binary classification between default and non-
default enterprises. To evaluate performance, multiple experiments are conducted, including structure
perturbation, training ratio variation, layer depth, and attention head configuration. The proposed model is
assessed against mainstream methods using metrics such as accuracy, F1-score, and precision. Results show
that the model outperforms existing baselines in structural representation, risk identification accuracy, and
robustness to graph noise. Especially in dense credit graphs with multi-hop dependencies, the model
effectively captures deep relational patterns and abnormal paths, demonstrating strong classification
performance and stability for credit risk tasks in complex financial networks.
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1. Introduction

In modern financial systems, corporate credit risk management remains a core issue[l]. As financing
structures become increasingly complex and credit entities diversify, traditional credit assessment methods
based on financial indicators and static scoring systems face significant challenges. Enterprises build complex
credit relationship networks through trade, investment, guarantees, and other forms of interaction. These
network structures influence not only the creditworthiness of individual firms but also pose systemic risk
through potential contagion effects. Therefore, identifying potential default-prone entities within large-scale
heterogeneous enterprise data has become a critical technical challenge in financial regulation and risk
control[2].

Compared with traditional methods, graph neural networks (GNNs) have inherent advantages in modeling
non-Euclidean structured data. They can capture the graph-based characteristics of credit relationships among
enterprises. This approach leverages not only the features of individual enterprise nodes but also indirect
information from connected entities, thus offering a more comprehensive semantic view of the credit network.
For instance, a change in the credit status of a supplier or customer may signal risk that propagates through
the graph. GNNs are capable of learning from such relational paths. On this basis, discriminative algorithms



built on credit graphs can go beyond the limits of static models and improve the modeling of credit risk
dynamics.

The advancement of financial technology provides new opportunities for structured relationship modeling.
Techniques such as graph representation learning, graph attention mechanisms, and multi-hop path extraction
have made it feasible to model complex credit structures among enterprises efficiently. Corporate default is
rarely an isolated event. A combination of network structure, industry linkages, and historical cooperation
often influences it. A GNN-based modeling framework enables deep abstraction and generalization of credit
dependencies, supporting more accurate risk identification and classification. This is of practical value in
credit issuance, investment management, and regulatory decision-making[3].

Moreover, credit risk in enterprises is inherently a temporal and group-coupled classification problem.
Traditional node classification or regression models struggle to capture their evolving nature. GNNs, through
structure-aware mechanisms and embedded representations, offer an efficient way to compress and integrate
high-dimensional credit behavior. This helps reduce overfitting caused by high feature dimensionality and
allows for modeling long-term credit trends using historical behavior data. Risk identification models based
on such frameworks can retain micro-level features while capturing global associations in the credit network.
This leads to better robustness in identifying financial entities with vague risk boundaries and complex
relationships[4].

In summary, corporate credit risk management is shifting from static analysis toward structure-aware and
dynamic modeling. Against this background, research on GNN-based credit relationship modeling and risk
classification represents not only a technical frontier but also a vital step toward intelligent and systematic
financial risk control. By deeply analyzing enterprise credit networks and extracting their graph structures, it
becomes possible to enhance the accuracy, sensitivity, and interpretability of risk identification. This lays a
solid theoretical and methodological foundation for building a more transparent, fair, and efficient credit
evaluation system.

2. Relevant Literature

Corporate credit risk identification has long been a key research topic in the financial domain. Traditional
approaches rely on financial statements, credit scores, and historical default records. Classical machine
learning algorithms such as logistic regression, decision trees, and support vector machines are commonly
used. These methods perform reasonably well when data is structured and feature relationships are clear[5].
However, they often struggle with generalization and interpretability when facing complex, nonlinear credit
behaviors in real-world settings. Moreover, static modeling overlooks interactions between enterprises and
ignores the dynamic external environment. This limits the ability to capture risk transmission mechanisms
and systemic vulnerabilities[6].

In recent years, as modeling capabilities for graph-structured data have improved, researchers have turned
their attention to credit network relationships among enterprises. They attempt to extract risk features from
structural information. Some studies apply graph theory tools by constructing guarantee graphs or transaction
graphs. They use graph metrics such as degree centrality, clustering coefficient, and shortest path length for
risk identification. While these methods broaden the scope of risk representation, they still rely on
handcrafted features. This makes it difficult to automatically learn deep representations from graph structures.
With the rise of graph neural networks, a more expressive and automated modeling paradigm has been
introduced into credit risk prediction tasks. This has become a powerful alternative to traditional graph-based
analysis[7].

Graph neural networks use multi-layer message passing mechanisms to integrate information from nodes and
their neighbors. They can effectively model multi-hop dependencies and contextual information in graph
structures. Existing studies have applied GNNs to scenarios such as banking guarantee networks and supply
chain networks. They use graph convolution or attention mechanisms to extract representation vectors of



enterprises within their credit networks for default prediction and credit scoring. These models incorporate
not only the financial and behavioral features of each node but also the global structure of the credit graph.
This improves their ability to recognize complex credit behavior. Some studies have further introduced
heterogeneous graph modeling strategies. These integrate different types of enterprise relationships and
multi-source data, offering new perspectives for multidimensional credit risk assessment[8§].

Meanwhile, the combination of GNNs with sequence modeling has emerged as a new direction. Some
research explores integrating time series features with graph structures to handle the evolving nature of
corporate credit. In such models, GNNs capture static or slowly changing structural dependencies, while
recurrent networks or transformer architectures are used to model behavioral trajectories over time. This
fusion significantly enhances sensitivity to sudden credit risk changes and chain reactions. It is especially
useful in multi-period, cross-industry, and highly interconnected financial environments. Overall, existing
work has provided a rich foundation for credit relationship modeling and risk identification. However,
limitations remain in terms of model generalization, coarse graph definitions, and insufficient integration of
heterogeneous information. Further improvements are needed to enhance both expressiveness and practical
utility.

3. Method Overview

The enterprise credit relationship modeling and default risk identification algorithm proposed in this paper is
based on the graph neural network framework. The core idea is to build an enterprise credit relationship
graph and combine node characteristics and structural dependencies to perform end-to-end risk
identification modeling. Its model architecture is shown in Figure 1.
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Figure 1. Architecture of the GNN-based Default Risk Identification Framework

First, let the enterprise set be V' = {v,,v,,...,v, } , each node represents an enterprise, and the graph structure is
represented by G =(V,e) , where £ c V' xV represents the credit relationship between enterprises, such as



. . d .
guarantee, transaction, investment, etc. Each node v, corresponds to a feature vector x, € R® , which
represents its multi-dimensional information, such as financial, behavioral, and industry attributes.

In the representation learning process of graph neural networks, the model updates the representation of the
central node by aggregating the feature information of neighboring nodes. The update formula of the basic
graph convolution layer can be expressed as:

1
Y =o( wOh')
SoINOING

N(i) represents the neighbor set of node 1, hj(.l ) represents the representation of node j in the lth layer, W

represents the learnable weight, and o represents the nonlinear activation function. This structure can encode
the local graph topology and node features, and realize the structural perception of corporate credit semantics.

In order to further improve the model's ability to distinguish heterogeneous relationships between enterprises,
the attention mechanism is introduced to perform weighted aggregation on neighboring nodes. The attention
weights of node i and neighbor j are calculated as follows:

_ exp(LeakyRELU (a' [Wh; || Wh,]))
@ = ZkeN(i) exp(LeakyRELU (a' [Wh, || Wh, 1))

Where a is the attention parameter vector, || represents the vector concatenation operation, and W is the
feature transformation matrix. This mechanism can automatically learn the strength of relationships and
highlight the contribution of important connections to risk transmission.

After obtaining the final node embedding vector z, , the default probability mapping model is performed
through the fully connected layer, and the discriminant function form is as follows:

y. =o'z, +b)

Where w and b are classifier parameters, and y, € (0,1) represents the probability of node i defaulting. To
optimize the overall model, a weighted cross-entropy loss function is used for training, which is:

N
L==> w[y,log¥ +(1-y)log(-3)]
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v, €4{0,1} is the true default label, and w, is the sample weight, which is used to balance the imbalance of
positive and negative samples.

The overall algorithm architecture supports a unified optimization process of multi-layer graph embedding
learning, relationship-weighted perception, and risk output mapping. This method not only can model static
information of enterprises, but also can strengthen the modeling expression of credit risk transmission paths
through graph structures, providing structured support for the identification of high-risk enterprises. The
model adopts an end-to-end back propagation method at the full graph level during training to achieve joint
optimization of feature learning, structural modeling, and risk discrimination.

4. Experimental Dataset

This study uses the Tianchi Enterprise Guarantee Network Dataset. The dataset is provided by the Alibaba
Tianchi platform and is widely used in corporate credit risk analysis and graph-based modeling tasks. It
contains a large number of enterprise nodes and their mutual guarantee relationships, forming a graph



structure with clear economic significance. It is well-suited for studying how credit relationships influence
default risk.

The dataset is organized in the form of a graph. Each node represents an enterprise. Each edge indicates a
guarantee relationship between two enterprises. Edges may have direction and weight attributes. In addition,
each node is associated with multi-dimensional features such as registered capital, years of operation,
industry type, and credit rating. These features support the construction of joint modeling frameworks based
on both node attributes and structural information. The dataset also distinguishes between default and non-
default enterprises, making it suitable for supervised learning tasks.

To ensure experimental feasibility and real-world relevance, the raw data were cleaned, deduplicated, and
structured. A stable graph and corresponding feature matrix were constructed. The final graph contains about
50,000 enterprise nodes and nearly 100,000 guaranteed edges. It forms a high-density credit network with
multiple interwoven paths. This structure is appropriate for deep modeling and risk classification using graph
neural networks.

5. Results and Analysis

In the experimental results section, the relevant results of the comparative test are first given, and the
experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method Accuracy Macro-F1 Precision
GDANJ9] 84.5% 83.1% 81.6%
TemGNN[10] 83.2% 81.7% 80.2%
CCR-GNN[11] 81.8% 80.4% 78.9%
SparseGraphSage|[12] 80.6% 79.1% 77.3%
Ours 86.3% 84.9% 83.8%

Overall, the proposed model demonstrates superior performance in corporate default risk classification. In
terms of Accuracy, the model achieves 86.3%, nearly two percentage points higher than the best-performing
baseline model, GDAN. This shows that incorporating graph structure awareness and relationship modeling
significantly improves overall classification accuracy. The result indicates that the model can more accurately
distinguish between default and non-default enterprises, reflecting stronger risk identification capability.

For the Macro-F1 score, the model also achieves the highest value of 84.9%, outperforming all comparison
models. This suggests that it maintains strong classification ability even under class imbalance. Compared
with models such as CCR-GNN and TemGNN, the improvement in F1 score means the model not only better
identifies default enterprises (the minority class) but also reduces false positives for non-default firms. This
reflects the robustness and adaptability of the model in credit risk classification tasks.

In terms of Precision, the model reaches 83.8%, significantly outperforming SparseGraphSage at 77.3% and
CCR-GNN at 78.9%. A higher Precision indicates that a greater proportion of enterprises predicted as default
are indeed defaulting. This reduces the risk of false alarms. In real financial risk control scenarios, this
capability is important, as misclassifying non-default firms as high-risk can directly impact credit issuance
and regulatory decisions.



Taken together, the model achieves strong performance across all three metrics. The proposed graph neural
network-based credit relationship modeling algorithm not only excels in accuracy but also shows balanced
and reliable classification ability. Modeling enterprise guarantee and cooperation relationships as graph
structures helps uncover multi-hop dependencies and hidden risk signals. This provides a more precise and
systematic solution for intelligent default risk identification.

This paper also explores the impact of changing the number of graph convolution layers on the overall
performance of the proposed model, focusing on how different layer depths affect the model's ability to learn
and represent complex structural patterns within enterprise credit networks. In graph neural networks, the
number of convolutional layers determines the receptive field of each node, influencing how far information
can propagate through the graph and how deeply multi-hop dependencies are captured. Adjusting this
architectural parameter plays a crucial role in balancing local feature extraction and global structural
awareness, which are both essential for accurate risk classification. By systematically varying the number of
layers, the study aims to analyze how network depth contributes to the expressiveness, stability, and
generalization capacity of the model. The corresponding experimental setup and comparative findings are
illustrated in Figure 2, providing a comprehensive view of this critical architectural factor in the context of
graph-based credit risk modeling.
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Figure 2. The impact of changing the number of graph convolution layers on model performance

The impact of the number of graph convolutional layers on model performance shows a clear trend. As the
number of layers increases, the model's accuracy improves at first and reaches its highest value (86.3%) at
three layers. After that, a slight decline occurs, showing a typical overfitting turning point. This trend
suggests that increasing the network depth moderately enhances the model's ability to capture multi-hop
dependencies and complex structures in the credit graph. It helps extract hidden risk relationships and
improves classification accuracy.

When the model has only one or two layers, performance is weaker. This indicates that the graph information
is not sufficiently propagated. Nodes can only perceive local features from immediate neighbors. As a result,
the model cannot express complex credit relationships and shows clear underfitting risks. This outcome
suggests that shallow structures are not adequate for capturing deep credit influence paths across levels and
industries in the enterprise network.

When the graph convolutional depth exceeds three layers, such as with four or five layers, the model still
performs well, but accuracy declines. This may be due to oversmoothing, where stacking too many layers



leads to excessively similar node representations. The reduction in feature distinction weakens the model's
classification boundaries and may cause overfitting or degraded expressiveness.

This paper also examines the impact of the number of attention heads on the representation ability of graph
structure, focusing on how different configurations influence the model's capacity to capture and differentiate
key relational patterns within the enterprise credit network. In graph neural networks equipped with attention
mechanisms, the number of attention heads determines how many independent subspaces the model uses to
attend to neighborhood information, affecting both the diversity and granularity of structural learning. By
varying this parameter, the study investigates the balance between expressive power and noise sensitivity in
structural representation. The corresponding experimental design and comparative analysis are illustrated in
Figure 3, providing insight into the role of attention head settings in enhancing graph-based modeling of
credit dependencies.
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Figure 3. The impact of the number of attention heads on the representation ability of graph structures

The experimental results show that the number of attention heads has a significant impact on the performance
of graph neural networks in modeling enterprise credit graph structures. When the number of attention heads
is 4, the model achieves the highest accuracy (86.3%). This indicates that the model reaches an optimal
balance in focusing on neighboring structures and capturing key credit dependencies through multi-channel
attention. The result confirms the effectiveness of multi-head attention in enhancing structural representation
and improving risk classification accuracy.

When the number of attention heads is low, such as 1 or 2, the model shows weaker performance. This
suggests a limited focus range and insufficient representation capacity in structural modeling. In this case,
semantic information from different neighbor paths is not well separated. As a result, credit dependencies
among enterprises cannot be fully captured, which reduces the precision of risk identification.

When the number of attention heads increases further to 8 or 12, model performance starts to decline. This
may be due to the accumulation of redundant information and overlap among subspaces. Such overlap can
dilute feature representations and introduce structural noise, making it harder for the model to focus on truly
important graph information. This “over-expression” effect is especially evident in complex and
heterogeneous credit networks, reflecting the model's sensitivity to structural noise.

Therefore, setting the number of attention heads properly is essential for improving the resolution of graph
structure information and enhancing the ability to model credit risk. The experimental results suggest that
using four attention heads achieves the best structure-aware performance in enterprise credit network tasks. It



maintains diversity in information channels while avoiding over-complication of structural expression, which
helps improve the accuracy of identifying hidden credit risk.

This paper also gives an evaluation of the model's robustness under changes in the proportion of graph
structure perturbations, and the experimental results are shown in Figure 4.
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Figure 4. Model robustness evaluation under changing graph structure perturbation ratios

The experimental results show that the model performs best when the graph structure is undisturbed (0%),
achieving an accuracy of 86.3%. This indicates that the model has strong risk identification capability on the
original credit relationship network. It demonstrates that the proposed graph neural network can effectively
model multi-hop dependencies and risk propagation paths between enterprises in an ideal, noise-free
environment. The model provides an accurate structural representation of credit relationships.

When the disturbance ratio increases to 10%, the model remains relatively stable. Accuracy stays around
85.6%, with only a slight decrease. This suggests that the model has a certain level of robustness under mild
structural perturbation. Even when some edges are altered or disrupted, the model can still capture key
relationships in the graph and make reliable predictions on default risk. This reflects its ability to resist local
structural noise.

However, as the disturbance ratio increases to 20%, 30%, and 40%, model performance declines significantly.
Accuracy drops to 84.2%, 82.7%, and 81.2%, respectively. This trend indicates that the model relies heavily
on the completeness of the graph structure. When a large proportion of edge information is disturbed, the
model struggles to perceive the original credit paths and risk dependencies. This negatively impacts the
prediction results. The findings highlight the critical role of credit graph structure in model classification
performance.

In summary, the proposed model shows robust performance under mild graph disturbances but suffers
noticeable degradation under severe structural interference. This experiment validates the boundary of the
model's robustness in handling graph uncertainty and missing information in real-world settings. It also
provides methodological insights for future improvements in abnormal structure repair and graph
augmentation techniques.

This paper further investigates how variations in the size of the training set affect the model's generalization
ability, which is a critical factor in the performance and stability of learning algorithms. In the context of
enterprise credit risk modeling based on graph neural networks, the amount of training data directly



influences the model's capacity to capture complex structural dependencies, learn discriminative
representations, and adapt to unseen scenarios. A detailed exploration is conducted to examine how different
proportions of training samples contribute to the learning process, particularly in graph-structured
environments where node interactions and multi-hop relations play a central role. The corresponding
experimental setup and observed trends related to training scale adjustments are illustrated in Figure 5,
offering valuable insights into how training data availability shapes model robustness and predictive
consistency.
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Figure 5. The impact of changes in training set size on model generalization ability

As shown in Figure 5, the size of the training set has a significant impact on the model's generalization ability.
With the gradual increase in the training ratio, both Accuracy and F1-score show a consistent upward trend.
This indicates that a larger training set helps the model better learn complex credit relationships and multi-
hop dependencies among enterprises, thereby improving risk identification and classification accuracy.

In terms of Accuracy, when the training ratio increases from 20% to 60%, the model's performance improves
significantly. Around 60%, the model reaches a “stability threshold,” suggesting that once sufficient
structural samples are provided, the model's ability to capture risk paths becomes stable. This phase marks a
transition from underfitting to effective generalization and reflects enhanced understanding of the credit
graph structure.

For the F1-score, the model's overall classification ability under class imbalance continues to improve as the
training ratio increases. When the training ratio reaches 100%, the model hits a “saturation point,” where
further increasing the training size brings limited performance gain. This suggests that graph neural networks
may reach a performance ceiling after absorbing structural knowledge. In dense graphs, overtraining can
introduce redundancy rather than further improvements.

Overall, the experiment confirms that training set size is a sensitive factor in enterprise credit graph modeling.
Proper control of the training ratio not only enhances performance but also balances training cost and
practical deployment needs. In risk identification systems, the training scale should be selected based on data
size and graph complexity to ensure stability and usability across different scenarios.

6. Conclusion

This paper presents a novel graph neural network-based approach for modeling enterprise credit relationships
and identifying default risk. By integrating structural representation learning with node-level attribute
modeling, the proposed framework effectively captures multi-hop dependencies and complex credit



interactions within large-scale guarantee networks. The experimental results demonstrate that the model
achieves superior classification accuracy and robustness compared to existing baseline methods, particularly
under varying training scales, attention configurations, and structural perturbations. This validates the
effectiveness of incorporating relational structures in enhancing the interpretability and precision of risk
identification.

The study also highlights the sensitivity of model performance to key architectural parameters such as graph
convolutional depth and attention head count. Careful tuning of these components enables the model to better
extract meaningful features from heterogeneous graph data, while avoiding common issues such as
overfitting and feature oversmoothing. Additionally, the model exhibits strong adaptability under moderate
graph noise and class imbalance, making it suitable for real-world financial scenarios where credit data may
be incomplete, noisy, or temporally dynamic. The findings contribute empirical evidence and methodological
insights to the ongoing exploration of graph learning techniques in financial risk modeling.

Beyond the immediate task of credit risk classification, the methodology proposed in this paper can be
extended to other domains where structured relationships and temporal dynamics play a key role. These
include fraud detection, supply chain risk analysis, compliance monitoring, and macroeconomic network
modeling. The ability to model inter-entity dependencies in a scalable and automated way opens up new
possibilities for intelligent decision support systems in finance and beyond. The graph-based paradigm also
provides a foundation for building more transparent, explainable, and adaptive models for high-stakes
regulatory applications.

7. Future Work

Future work will focus on enhancing the temporal modeling capabilities of the framework by integrating
dynamic graph neural networks and sequential learning mechanisms. Another promising direction is the
incorporation of self-supervised or contrastive learning strategies to improve performance in low-label or
noisy-label environments. Furthermore, developing more sophisticated graph augmentation and repair
mechanisms will be essential for boosting model resilience in the face of missing or corrupted relational data.
These advancements are expected to further improve the practical deployment of graph-based credit risk
systems and support the development of more resilient and intelligent financial infrastructures.
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