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Abstract: This paper addresses the challenges of high computational cost and low semantic transfer
efficiency in adapting large language models to specific domains. It proposes a domain-oriented knowledge
distillation framework for large language models. The framework employs a teacher-student architecture to
enable model compression and knowledge transfer. On this basis, it incorporates a structural alignment
mechanism and a domain-aware module to enhance the student model's ability to represent domain-specific
semantic structures. Specifically, the teacher model first constructs a domain representation based on the
raw input. This representation is then projected into a unified semantic space through structural mapping. At
the same time, the student model is guided to learn semantic representations and domain features layer by
layer. To improve semantic compression efficiency, the student model integrates a multi-granularity
aggregation mechanism. This component structurally fuses semantic information, enhancing the
compactness and consistency of representations. In the experimental section, multiple sensitivity
experiments are designed to evaluate the impact of distillation depth, projection dimension, and sampling
strategy. The evaluation focuses on the student model's ability to align semantics and model domain features.
Comparative analysis based on real-world domain datasets shows that the proposed method outperforms
several mainstream distillation baselines. It achieves better performance in semantic retention, structural
consistency, and model efficiency. These results confirm the effectiveness and robustness of the proposed
approach in domain adaptation tasks.
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1. Introduction

With the continuous advancement of artificial intelligence, large language models (LLMs) have become a
key technology driving innovation in intelligent systems due to their powerful capabilities in natural language
understanding and generation[1]. However, general-purpose LLMs are usually trained on large-scale general
corpora and lack deep adaptation to the linguistic features and knowledge systems of specific domains[2]. As
a result, they often fail to meet the high demands for precision and professionalism in vertical domains such
as law, finance, and biomedical fields. Therefore, how to enable effective domain adaptation for LLMs has
become an urgent issue in natural language processing. Under constraints such as data privacy, training cost,
and model size, developing an efficient, controllable, and generalizable domain adaptation mechanism is
particularly critical.

Although mainstream LLMs offer broad language understanding abilities, their large parameter size leads to
high deployment costs and significant resource consumption. This limits their practical application in
resource-constrained scenarios. In contrast, small models are more deployable and efficient but often



underperform in complex tasks and domain-specific processing. Against this backdrop, knowledge
distillation has shown great potential. It transfers the language knowledge, reasoning abilities, and domain-
specific insights from a large teacher model to a smaller student model. This approach maintains performance
while reducing computational demands and supports fast domain adaptation[3].

However, general knowledge distillation methods often ignore domain-specific differences in
representational structures, semantic distribution, and conceptual expression. This can cause the student
model to lose critical semantic capabilities during transfer. Furthermore, domain corpora are often sparse,
imbalanced, and fragmented. These challenges make it difficult for general distillation strategies to capture
domain-specific knowledge patterns[4]. A domain-oriented knowledge distillation framework should model
domain features at the representation level and integrate domain-sensitive mechanisms into the distillation
process. This ensures accurate semantic transfer and a deeper understanding of professional content.

To address these challenges, researchers need to explore a distillation framework that integrates structural
guidance, knowledge fusion, and dynamic control. This framework should support fine-grained knowledge
alignment across models at different scales and representation levels. It should also incorporate external
knowledge bases, domain labels, or symbolic rules to help the model accurately grasp domain-specific
semantics and reasoning paths. A multi-level, multi-task distillation design can enhance the generalization
and robustness of lightweight models in professional tasks and help transition LLMs from general
understanding to domain-specific cognition[5].

Therefore, building a domain-adaptive knowledge distillation framework for LLMs is not only a technical
path for improving the practicality of Al systems in vertical domains. It is also an important opportunity to
promote integration across research areas such as multi-task learning, cross-domain modeling, and efficient
model compression. This research contributes to enhancing lightweight models' performance in specific tasks
and supports the sustainable transfer and ecosystem expansion of large model knowledge. It also drives the
application and intelligent evolution of natural language processing in key fields.

2. Background & Motivation
2.1 Background

In recent years, large language models have achieved remarkable progress in tasks such as language
understanding, dialogue generation, and text analysis[6]. They have become a core technology in the field of
natural language processing. However, these models are usually trained on general-purpose corpora and lack
sensitivity to the linguistic features of specific domains. This limits their ability to meet the high demands for
professionalism, accuracy, and contextual consistency in real-world applications. When processing domain-
specific texts in areas such as medicine, law, or finance, general models often produce ambiguous semantics,
lack domain knowledge, or make reasoning errors. These issues reduce their effectiveness in vertical
industries[7].

At the same time, the growing size of language models has brought significant challenges in terms of
inference speed, storage cost, and deployment complexity. These issues are especially serious in resource-
constrained environments, such as on end-user devices or edge computing platforms. The large number of
parameters and high inference cost greatly limit the practicality of large models. In addition, training such
models requires massive data and computational resources, which are often unaffordable for most domain
users. This further widens the gap between large model capabilities and real-world deployment[8§].

Traditional fine-tuning or domain-specific pretraining can partially address these problems. However, they
often rely on large-scale domain-specific corpora, which are costly to obtain. These methods also tend to
offer limited generalization. Moreover, they usually lack transparency and control in the knowledge transfer
process. This can lead to the loss of general abilities or overfitting to specific samples during adaptation.
Therefore, a key challenge in current domain adaptation research is how to enhance domain understanding
while maintaining computational efficiency and adaptability.



2.2 Motivation

The growing demand for domain-specific large language models has drawn increasing attention to how
model capabilities can be efficiently transferred under limited resource conditions. Knowledge distillation, a
transfer method where a large model serves as the teacher and a smaller model as the student, offers
promising advantages. It not only enables effective model compression but also retains important knowledge
structures from the source model. Compared to traditional fine-tuning, distillation better supports the
construction of lightweight and specialized domain models while maintaining inference efficiency.

However, most existing knowledge distillation methods are designed for general scenarios. They often lack
deep modeling of domain-specific knowledge structures and linguistic features. In professional contexts,
models must go beyond general language understanding. They need to accurately capture domain-specific
terminology, logical structures, and knowledge relations. This raises higher requirements for knowledge
retention and transfer during distillation. Therefore, it is essential to explore distillation mechanisms that can
capture both general language capabilities and domain-specific characteristics. Such mechanisms can
improve the model's semantic adaptability and representation stability.

Moreover, for complex professional tasks, static knowledge transfer strategies often struggle with linguistic
variability and task-specific challenges. Designing a dynamic, controllable, and structure-aware distillation
framework can enhance the student model's ability to respond to domain-specific tasks. It can also provide a
more generalizable solution for multi-task and multi-domain adaptation. This need forms the core motivation
of the present research.

3. Method

3.1 Overall Framework

The knowledge distillation framework for domain adaptation proposed in this study is composed of three
key components: domain-aware teacher model representation construction, structurally aligned knowledge
mapping mechanism, and multi-granular semantic aggregation student model optimization process. First, the
teacher model generates a deep representation with global semantics and domain feature fusion by jointly
modeling large-scale general corpus and domain supplementary data. Subsequently, the framework achieves
high-dimensional semantic alignment between teacher output and student input through a structural
projection function to ensure that domain knowledge is structurally consistent in the embedding space. The
overall model architecture is shown in Figure 1.
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The whole process is designed to preserve the semantic integrity of the input while capturing its inherent
hierarchical structure. This ensures that the rich semantic features and multi-level dependencies present in



the original data are retained throughout the knowledge transfer process. At the same time, the framework
establishes a structured pathway for knowledge mapping between the teacher and student models, enabling
effective alignment across different model capacities. Formally, the teacher model can be expressed as:

H, =fT(X;9T)

Where X represents the input text sequence, &, 1is the teacher model parameter, and £/, is the latent
representation of its output.

After obtaining the semantic representation of the teacher model, the student model gradually learns and
reconstructs the knowledge distribution of the teacher model by layer-by-layer construction and structural
alignment mapping of the distilled signal. To enhance the adaptability, the student model introduces a
domain-aware transformer during the distillation process, enabling it to achieve adaptive adjustment for
semantic features in different domains. Finally, the representation of the student model can be defined as:

Hg =gy (X;6)

g, represents the student model structure after distillation, &, is its parameter set, and H is the learned

semantic representation. Through this multi-layer nested modeling and mapping process, the framework
achieves efficient knowledge compression and domain transfer capabilities.

3.2 Optimization Objective

In this framework, the optimization objective is established based on the full process modeling from the
original input text to the output representation of the student model. First, the original text sequence
X ={x,,x,,...,x,} 1s encoded into a low-dimensional vector sequence through the embedding module, which

1s recorded as:
E = Embed(X) e R™

Where d represents the embedding dimension. The embedded representation is then input into the teacher
model to generate a domain-aware semantic representation /4, , which serves as a knowledge source for

subsequent structure alignment and representation projection.

In order to enable the student model to effectively simulate the expressive power of the teacher model while
operating under limited parameter constraints, the framework first processes the teacher model's output
through a structure mapping function. This function performs spatial alignment to ensure compatibility
between the heterogeneous model architectures. The aligned representation is then projected into an
intermediate unified representation space that serves as a shared semantic ground for both models. This
transformation facilitates smooth and consistent knowledge transfer across different levels of abstraction, and
the resulting representation is formally recorded as:

Z=¢(H,)eR"™

Where ¢(-) represents the structural projection function and d' 1is the intermediate representation
dimension. The student model will use this structured knowledge representation as an auxiliary input and
jointly drive the generation of its semantic vector with the embedding code.

In the internal structure of the student model, a domain-aware transformation module is introduced to fuse the
input sequence and the projection representation to construct the student semantic representation.

H,=F(E,Z;6,)



Where F(-) represents the transformation function of the student model and &g represents the parameters

of the student model. This process realizes the joint modeling of input encoding and domain knowledge and
enhances the expressiveness and semantic adaptability of the student model.

Finally, the output of the student model is integrated with global and local semantics through a multi-
granularity semantic aggregation module to obtain the final semantic representation Y for downstream tasks
or further processing.

Y = Aggregate(H ;)

At this point, the optimization path from input text to output representation is fully established. Through the
continuous construction of this optimization goal, the model gradually completes the adaptation and abstract
construction of the student model while retaining the structural semantics of the teacher.

4. Experimental setup & Dataset
4.1 Experimental setup

This study constructs an experimental setup under standard cross-domain text processing tasks to evaluate the
adaptation performance of the proposed knowledge distillation framework. The experiments cover different
model sizes and input lengths. All experiments are conducted on a unified hardware environment. Model
parameters are initialized identically to ensure comparability of results. The training process uses a
distributed parallel framework to support efficient distillation for large models. A lightweight decoder
module is integrated into the student model to evaluate the balance between inference efficiency and
representation accuracy. To eliminate external interference, all experiments use a fixed random seed. Batch
size and learning rate are kept consistent across all models.

In implementation, the teacher model is built with a multi-layer Transformer encoder. The input sequence is
embedded and then passed through a representation construction module. The student model adopts a
shallower architecture with structural simplification but maintains alignment with the teacher's semantic
structure. A staged training strategy is employed. The teacher model first completes representation extraction.
Structural mapping and student optimization then proceed in parallel. Experiments are conducted on a high-
performance server cluster equipped with NVIDIA A100 GPUs. Details of the environment setup,
dependency versions, and key parameters are listed in Table 1.

Table 1: Experimental detailed parameter settings

Component Configuration

Hardware 4 x NVIDIA A100 80GB, 1TB RAM, 64-core CPU
Framework PyTorch 2.1.0 + CUDA 12.1

Max Input Length 512 tokens

Batch size 64

Learning Rate 2e-4

Optimizer AdamW

Mixed Precision Enabled (fp16)

Gradient Accumulation 2 Steps




Teacher Model Layers 24

Student Model Layers 6
Embedding Dimension 768
4.2 Dataset

This study uses the MedDialog-CN dataset as the primary domain-specific benchmark to evaluate the
proposed knowledge distillation framework in a medical context. The dataset is sourced from real-world
medical question-answering platforms. It covers a wide range of medical topics, including common disease
inquiries, symptom descriptions, and medication suggestions. The text style is highly specialized, and the
linguistic structure is complex, presenting strong domain-specific challenges.

Each text pair in the MedDialog-CN dataset consists of a patient's question and a doctor's response. The
content is in a mixed format of Chinese and English, with Chinese being the dominant language. The dataset
features wide semantic spans and diverse expression styles. It is well-suited for evaluating language model
adaptation and transfer in professional domains. Each entry contains the question, the answer, and some
metadata to support context modeling and hierarchical semantic representation.

To meet the input requirements of the models, the original data was standardized. This includes removing
redundant labels, unifying encoding formats, limiting the maximum sequence length, and cleaning abnormal
characters. The final dataset used for training and testing contains approximately 200,000 question-answer
pairs. It is divided into training, validation, and test sets in a ratio of 8:1:1. This ensures consistency in task
distribution and data diversity.

5. Experimental Results

In the experimental results section, the paper first introduces the relevant outcomes derived from a series of
comparative experiments designed to evaluate the performance of the proposed method against several
representative baselines. These comparisons are conducted under consistent experimental settings to ensure
fairness and reliability. The purpose of this evaluation is to systematically assess the effectiveness, efficiency,
and adaptability of the proposed approach across multiple dimensions. To facilitate clear interpretation and
facilitate direct comparison, the results of these experiments are organized and presented in Table 2.

Table 2: Comparative experimental results

Method Semantic Alignment | Representation Structural
Compactness Consistency
MiniLLM|9] 84.2 78.9 80.4
Gkd[10] 86.7 80.1 82.5
Ddk[11] 87.5 81.4 83.9
Mixkd[12] 88.3 82.7 85.1
DistillSeq[13] 85.6 79.5 81.2
Ours 91.4 87.3 89.6




As shown in the table, the proposed distillation framework achieves the best performance in Semantic
Alignment, reaching a score of 91.4. This result is significantly higher than those of other baseline methods.
It indicates that the framework offers better fidelity in cross-model semantic transfer. The student model can
retain domain-specific semantic information from the teacher model more effectively. This capability is
crucial for building student models with strong domain understanding. In contrast, traditional structural
distillation approaches such as MiniLLM and DistillSeq show clear disadvantages in semantic alignment.
This suggests that they struggle to capture key contextual knowledge in complex domain-specific corpora.

In terms of Representation Compactness, the proposed method also achieves a leading score of 87.3. This
reflects the model's ability to compress representations while maintaining semantic expressiveness. It
demonstrates that the framework supports the learning of compact and effective semantic vectors. This is
especially beneficial for deployment in resource-constrained environments. The performance gaps observed
in other methods on this metric suggest that their compression processes may cause information loss, which
affects model stability in downstream tasks.

The results on Structural Consistency further validate the strong adaptability of the proposed framework in
preserving the structural properties of the input data. This indicates that the framework does more than simply
align semantic representations. It also captures and retains the hierarchical and syntactic patterns embedded
within the input sequences. Such structural fidelity is critical in ensuring that the student model does not lose
essential organizational cues during the distillation process. By maintaining this structure, the model can
preserve the logical flow and coherence of domain-specific content.

This capability becomes especially valuable when dealing with complex domain tasks, where the structure of
the input often carries crucial semantic meaning. In fields like medicine and finance, textual data frequently
follows strict formats and exhibits layered semantic relationships. A model that can accurately retain and
reproduce these patterns is better equipped to understand nuanced concepts, perform reliable reasoning, and
support downstream applications requiring precision and clarity. Therefore, structural consistency plays a
vital role in enhancing both the interpretability and functional robustness of the distilled model.

This paper further investigates how varying the depth of the distillation process influences the semantic
alignment ability of the student model. By systematically adjusting the number of layers involved in the
knowledge transfer, the study explores the extent to which deeper or shallower distillation affects the model's
capacity to capture and reproduce the semantic structure provided by the teacher model. This analysis
provides valuable insights into the relationship between distillation depth and semantic representation quality.
The corresponding setup and findings are illustrated in Figure 2.

As shown in the figure, the semantic alignment ability of the student model steadily improves as the
distillation depth increases. In particular, from layer 1 to layer 5, the Semantic Alignment score rises from
approximately 78 percent to over 91 percent. This indicates that deeper distillation helps the student model
absorb domain knowledge embedded in the teacher model more effectively. The trend highlights the critical
role of deep semantic transfer in domain-oriented knowledge distillation tasks.

In the early stages of distillation, the student model lacks stable multi-level semantic structures. The acquired
knowledge mainly consists of surface-level or localized features, resulting in limited semantic alignment.
When the distillation depth exceeds three layers, the model gradually captures cross-layer dependencies and
contextual expressions from the teacher model. This enables efficient transfer and internalization of semantic
information. These findings further confirm the importance of multi-layer structures for learning complex
domain semantics.
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Figure 2. Effects of different distillation depths on the semantic alignment ability of student models

It is worth noting that when the distillation depth increases from five to six layers, the improvement in
semantic alignment becomes saturated or slightly declines. This suggests that more layers do not always lead
to better performance. Excessive depth may introduce redundant or noisy information. This can increase the
complexity of the student model's representation and weaken its ability to capture essential semantic elements.
Therefore, distillation depth should be carefully adjusted according to the task requirements and model
capacity.

This paper further conducts an in-depth analysis of how the setting of the projection dimension influences the
effectiveness of representation compression within the proposed framework. The objective of this analysis is
to investigate the relationship between dimensionality reduction and the model's ability to retain critical
semantic features during the transformation process. By systematically adjusting the projection dimension,
the study explores how this parameter affects the balance between information preservation and
computational efficiency. The corresponding setup and observations related to this investigation are
illustrated in Figure 3 to support a clearer understanding of the analysis.
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Figure 3. Analysis of the impact of projection dimension setting on representation compression effect



The results in the figure show that the representation compactness improves consistently as the projection
dimension increases. This trend is especially clear in the range between 64 and 384 dimensions. It indicates
that at lower dimensions, the student model struggles to retain the semantic information and structural
features from the teacher model. The limited representational capacity leads to weak semantic compression.
As the dimension increases, the representation space gains stronger expressiveness, allowing the student
model to learn domain-specific features more compactly.

After 256 dimensions, the improvement in compression begins to slow down. This suggests that the marginal
benefit of increasing dimensionality for semantic expression is decreasing. At this stage, the student model
can already capture the main domain-specific semantic patterns and structural relationships. While further
increasing the dimension may still offer slight gains, the benefit is not substantial when compared to the rise
in computational and storage costs. This trend provides practical guidance for dimension selection in model
compression during deployment.

At 512 dimensions, the best compression performance is observed. However, a slight decline appears at 768
dimensions. This suggests that excessively high dimensionality may introduce redundant information. It
complicates the representational structure and may negatively affect model generalization and inference
efficiency. This observation confirms the risk of information overload in high-dimensional spaces. It
highlights the need to balance representational capacity and information filtering in the projection structure
during distillation.

This paper further provides a comprehensive evaluation of the student model's capacity to capture and
internalize domain-specific knowledge when subjected to various sampling strategies during training. The
goal of this evaluation is to examine how different data selection methods influence the effectiveness of
knowledge transfer, particularly in scenarios where domain alignment plays a critical role. By analyzing the
behavior of the student model under these varying sampling conditions, the study aims to reveal potential
strengths and limitations in its ability to adapt to domain-relevant information. The corresponding evaluation
framework and visualization of the comparative outcomes are presented in Figure 4.
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Figure 4. Evaluation of the student model's ability to capture domain knowledge under different sampling
strategies

The experimental figure shows that different sampling strategies have distinct impacts on the student model's
ability to capture domain knowledge. The overall trend indicates that the Domain-Aware sampling strategy
achieves the best performance. It suggests that this method guides the student model to focus more effectively
on key domain information, resulting in more accurate knowledge transfer. This confirms the importance of
domain-aware mechanisms in preserving high-quality semantic content within the distillation framework.



In contrast, traditional strategies such as Uniform and Entropy improve model generalization to some extent.
However, due to the lack of selective control over domain semantics, their knowledge capture performance is
inferior to that of the Domain-Aware method. This indicates that relying solely on information entropy or
uniform sampling fails to select representative domain knowledge samples effectively. As a result, the
student model's performance in professional contexts is limited.

It is worth noting that the Random Masked strategy yields the lowest score. This shows that introducing
highly random and noisy samples during distillation may weaken the student model's ability to identify
semantic cores. This leads to unstable semantic alignment. The result further supports the importance of
semantic guidance during sampling for maintaining knowledge consistency and hierarchical semantic
structure.

The Hard Negative strategy performs close to Domain-Aware and outperforms most other methods. This
suggests that including boundary or confusing samples helps improve the model's discriminative ability and
its understanding of semantic boundaries. In summary, the experiment highlights the critical role of sampling
strategies in the distillation process. Carefully designed sampling mechanisms not only improve domain
semantic modeling but also offer a path to building more robust and efficient distillation systems.

6. Conclusion

This paper addresses the challenges of domain knowledge adaptation in large language models and proposes
a structured and controllable knowledge distillation framework. The goal is to balance model compactness
with semantic fidelity. The framework enhances the student model's understanding and expression of
domain-specific features by introducing domain-aware representations, structural alignment mappings, and
multi-granularity semantic aggregation mechanisms. Through clear modeling procedures and mechanism
design at each stage, the framework enables high-quality knowledge transfer from input text to compressed
representations. It offers a new approach to cross-model semantic transmission.

The experimental design includes a multi-dimensional evaluation, covering key factors such as distillation
depth, projection dimension, and sampling strategy. The proposed method is systematically validated in terms
of semantic retention, structural consistency, and representational compactness. Results show that a well-
designed structural distillation process significantly improves the student model's ability to handle
professional texts. It also achieves dual gains in performance and efficiency under resource-constrained
conditions. These results provide a technical foundation for deploying efficient large language models in
fields such as healthcare, finance, and law, where high levels of domain expertise are required.

In addition, this study identifies several key characteristics of knowledge transfer in domain-specific tasks.
These include the selectivity of domain semantic distribution, the importance of structural preservation, and
the influence of sampling strategy on adaptation performance. These findings contribute to the theoretical
understanding of domain knowledge transfer. They also offer valuable insights for future research on multi-
task learning, heterogeneous semantic compression, and distributed inference.

7. Future work

Future work may explore more generalizable cross-domain distillation methods. This includes incorporating
symbolic knowledge, external knowledge graphs, or language-guided structural strategies to improve student
model adaptability in low-resource or cold-start settings. The framework may also be extended to multimodal
environments by integrating visual, structured, and linguistic data. This would support the real-world
deployment of intelligent systems across domains such as education, healthcare, question-answering, and
public services, and further enhance their societal and industrial impact.
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