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Abstract: This paper presents a hybrid autonomous navigation system for mobile robots that integrates
vision-based deep reinforcement learning (DRL) with a visual simultaneous localization and mapping
(SLAM) module. The proposed framework employs a convolutional neural network and a Proximal Policy
Optimization (PPO) algorithm to learn control policies from raw RGB images, enabling end-to-end
navigation and obstacle avoidance. To enhance localization accuracy and robustness, we incorporate ORB-
SLAM2 as a geometric localization backbone, providing real-time pose feedback to the policy network.
Extensive experiments in both simulated and real-world environments demonstrate that the combined
DRL+SLAM architecture outperforms classical and vision-only navigation baselines in terms of success rate,
path efficiency, and collision avoidance. The results highlight the benefit of fusing learned perception and
geometry-based reasoning to achieve robust and generalizable robot autonomy in complex indoor
environments.
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1. Introduction
Autonomous navigation has become a cornerstone of mobile robotics, enabling intelligent agents to perceive
their surroundings, localize themselves within a map, plan safe and efficient paths, and adapt to dynamic
environments. In recent years, advances in computer vision and artificial intelligence have fundamentally
reshaped the way mobile robots navigate, especially with the introduction of deep reinforcement learning
(DRL) techniques that allow for end-to-end training of control policies directly from sensory inputs. Unlike
traditional navigation systems that rely on LiDAR sensors, hand-crafted rules, and static maps, DRL enables
robots to learn from interaction, offering better generalization to unseen environments and robustness in
unstructured scenarios. Despite its potential, vision-based DRL navigation still faces several critical
challenges: high-dimensional image input imposes a significant computational burden; learning stable
policies from sparse and delayed rewards remains difficult; and generalizing policies trained in simulation to
real-world conditions introduces a domain gap that can hinder deployment. Moreover, visual input alone may
be insufficient for precise localization, which is essential for safe and consistent obstacle avoidance. To
address these issues, this paper proposes a hybrid system that combines visual DRL with simultaneous
localization and mapping (SLAM) to create a robust, flexible navigation pipeline for indoor mobile robots.
We use RGB images as the sole input modality to train an actor-critic architecture for continuous control and
obstacle avoidance, while simultaneously incorporating ORB-SLAM2 to enhance localization accuracy and



map awareness. The integrated system allows the robot to operate effectively in both known and unknown
environments, learning goal-directed behavior through reinforcement while maintaining spatial consistency
through visual odometry and loop closure. We validate our approach through extensive simulations in
Gazebo and real-world experiments using a TurtleBot platform, comparing its performance against several
baseline models including classical navigation stacks and vision-only DRL models. Results show that our
method outperforms others in terms of success rate, collision avoidance, and trajectory efficiency. The
contributions of this work are threefold: (1) we develop a vision-based DRL framework for autonomous
navigation using RGB images only, removing dependency on expensive range sensors; (2) we integrate
ORB-SLAM2 into the learning pipeline to provide real-time localization feedback, improving stability and
adaptability; and (3) we conduct thorough experiments in simulated and real-world environments to
demonstrate the generalization capability and practicality of our system. The remainder of this paper is
organized as follows: Section II reviews related work in visual navigation and deep reinforcement learning.
Section III introduces the overall system architecture. Section IV describes the DRL framework and training
process. Section V details the SLAM integration. Section VI presents experimental setup and results. Section
VII discusses the findings and limitations, and Section VIII concludes with potential directions for future
work.

2. Related work
Autonomous navigation has long been a central topic in mobile robotics, and numerous approaches have been
developed over the decades to enable robots to move safely and efficiently through complex environments.
Classical navigation systems typically follow a modular architecture, consisting of perception, localization,
mapping, path planning, and control components. These systems often rely on LiDAR or ultrasonic sensors
for obstacle detection, with algorithms such as Dijkstra or A* for path planning, and PID or dynamic window
approaches for motion control. While these pipelines have proven reliable in structured indoor spaces, their
performance often degrades in dynamic, cluttered, or unstructured environments due to their limited
adaptability and dependency on high-quality sensor data. The emergence of deep learning has shifted
attention toward data-driven methods, especially convolutional neural networks (CNNs) for visual perception
and semantic scene understanding. In particular, the integration of vision and learning-based control has
opened the door to more flexible and generalizable navigation strategies. Deep reinforcement learning (DRL),
which combines the representational power of deep neural networks with the sequential decision-making
framework of reinforcement learning, has become a popular paradigm for robotic control. Early work by
Mnih et al. [1] demonstrated the potential of deep Q-networks in high-dimensional visual tasks, which later
inspired applications in continuous robot control, such as the work by Lillicrap et al. [2] using the Deep
Deterministic Policy Gradient (DDPG) algorithm. In the context of navigation, Zhu et al. [3] proposed a deep
reinforcement learning agent capable of navigating 3D environments using RGB images, achieving
promising results in simulated environments. More recently, Mirowski et al. [4] combined DRL with
auxiliary tasks like depth prediction and loop closure detection to improve performance in partially
observable settings, while Chaplot et al. [5] introduced hierarchical reinforcement learning for efficient
exploration and goal-reaching in large indoor spaces.
Despite these advancements, DRL-based visual navigation still faces practical deployment challenges. One
common limitation is the lack of robustness and generalization when models trained in simulation are
transferred to real-world environments—a phenomenon known as the “reality gap.” Domain randomization
[6] and domain adaptation [7] have been used to address this issue, but require careful tuning and additional
data. Another key limitation lies in the dependency on implicit localization within end-to-end DRL pipelines,
where the robot must infer its position solely from raw visual input. This can lead to erratic behavior,
especially in repetitive or ambiguous scenes. To address this, researchers have explored combining DRL with
simultaneous localization and mapping (SLAM) systems. For instance, Sadeghi and Levine [8] trained
policies in simulation and used visual SLAM during deployment to aid localization. Other works, such as
Kan et al. [9], introduced hybrid architectures where SLAM provides metric maps or pose estimates that feed



into the policy network. These approaches demonstrate that integrating classic localization with learning-
based planning can improve stability, especially when using monocular vision.
This work builds upon these insights by tightly coupling a DRL-based control policy with ORB-SLAM2,
leveraging the strengths of both learning and geometry-based methods. In contrast to prior work that either
relies on handcrafted map-based navigation or purely end-to-end DRL, we design a hybrid system where the
SLAM module provides spatial context, enabling the DRL policy to learn more efficiently and act more
reliably. Additionally, our experiments extend prior benchmarks by evaluating both simulated and real-world
scenarios, offering a more comprehensive validation of real-world applicability.

3. System Architecture
The proposed system architecture integrates vision-based deep reinforcement learning with a visual SLAM
module to enable autonomous navigation and obstacle avoidance in indoor mobile robots. As shown in
Figure 1, the architecture is composed of three primary modules: the visual perception and feature encoding
module, the deep reinforcement learning policy network, and the localization and mapping module based on
ORB-SLAM2. These modules operate in parallel and share partial data streams to ensure coherent decision-
making and real-time responsiveness.
The visual perception module utilizes an RGB camera mounted on the mobile robot to continuously capture
image frames of the environment. These images serve two purposes: first, they are input into a convolutional
encoder network that extracts compact, high-level visual features for the DRL policy; second, they are
forwarded to the ORB-SLAM2 system to support localization and environment mapping. The convolutional
encoder is a lightweight ResNet-18 backbone pretrained on ImageNet, followed by a spatial attention module
that enhances salient navigation cues such as doorways, hallways, and obstacles. The encoded visual features
are then passed to the policy network, which is implemented using an actor-critic architecture (specifically
the Proximal Policy Optimization or PPO algorithm). The actor network predicts continuous control
commands (linear and angular velocities), while the critic network estimates the value function to guide
policy updates during training. Unlike end-to-end models that rely solely on visual cues, our policy network
additionally receives pose information from ORB-SLAM2, enabling it to make more informed decisions in
spatially ambiguous scenarios.
The ORB-SLAM2 module operates concurrently and performs three critical functions: visual odometry
through feature tracking and motion estimation, keyframe-based mapping with loop closure detection, and
global pose graph optimization. We modify ORB-SLAM2 to output real-time pose estimations (in SE(2)) to
the policy network at a frequency synchronized with the control loop. This hybrid structure ensures that the
DRL policy has access not only to local visual cues but also to reliable global position feedback, which is
especially important when navigating in large or repetitive environments. The navigation module fuses the
outputs of the actor network and the SLAM-estimated pose to generate velocity commands, which are then
sent to the robot’s low-level controller (e.g., ROS velocity publisher) to drive the base.
This architecture is implemented within the Robot Operating System (ROS) framework, facilitating
modularity and real-world deployment. The communication between modules uses ROS topics and services,
while time synchronization is handled through the ROS TF tree and message timestamps. The system is
tested on a TurtleBot3 Burger platform equipped with an Intel RealSense D435i camera and a Raspberry Pi 4
for onboard inference, though initial training is performed in simulation using Gazebo with domain
randomization to bridge the sim-to-real gap.



Figure 1. Overview of the Proposed Navigation System Architecture

4. Deep Reinforcement Learning Framework
The core of the proposed navigation system is a deep reinforcement learning (DRL) framework that learns a
control policy for mapping visual observations to continuous action outputs. We adopt the Proximal Policy
Optimization (PPO) algorithm due to its robustness, sample efficiency, and compatibility with on-policy
training in high-dimensional environments. The DRL framework consists of an actor-critic network trained
using visual input and, optionally, pose feedback from the SLAM module. The learning process is modeled
as a Markov Decision Process (MDP), defined by a tuple (S,A,P,r,γ), where S is the set of states (encoded
images), A the action space (linear and angular velocity commands), P the transition probability distribution,
rrr the reward function, and γ∈[0,1] the discount factor. The agent aims to learn a stochastic policy
πθ(at∣st) parameterized by θ that maximizes the expected cumulative reward:

To achieve this, PPO updates the policy by maximizing a clipped surrogate objective function that ensures
stable and monotonic improvements:

The input to the DRL network is a stack of four consecutive RGB frames, resized to 84×84 pixels and
normalized, which provides temporal information necessary for motion estimation. These frames are passed
through a convolutional encoder composed of three convolutional layers with ReLU activations and max-
pooling, followed by a fully connected layer that outputs a latent feature vector of size 512. This vector is
then fed into two separate multilayer perceptrons: one for the actor, which outputs parameters of a Gaussian
distribution over actions (mean and variance), and one for the critic, which estimates the state-value function
V(s). During training, actions are sampled from the policy distribution and executed in the simulated
environment, and trajectories are stored in a buffer to compute advantages using Generalized Advantage
Estimation (GAE).



The reward function is designed to encourage forward movement toward the goal while penalizing
collisions and excessive rotation. Formally, it is defined as:

Training is performed in the Gazebo simulator using domain-randomized indoor environments with
different layouts, lighting conditions, and obstacle placements. This improves the generalization capability
of the learned policy and reduces overfitting to specific scenes. The policy is trained for 2 million timesteps
using minibatch SGD with a learning rate of 3×10−4 and batch size 64. The trained policy is then transferred
to the real TurtleBot platform, where inference is performed in real-time at 10 Hz using an onboard Jetson
Nano.
This DRL framework, enhanced by pose feedback from the SLAM module, allows the robot to navigate
efficiently even in visually ambiguous or repetitive areas, significantly improving success rates in long-
horizon navigation tasks. The fusion of vision-based learning and geometry-aware feedback establishes a
reliable and adaptive control system, suitable for both simulation and real-world deployment.

5. Visual Perception and SLAM Integration
While deep reinforcement learning provides a flexible and adaptive policy for autonomous navigation, its
reliance solely on high-dimensional visual input can lead to instability, especially in visually ambiguous or
symmetric environments. To overcome this limitation and enhance both spatial awareness and long-term
consistency, we integrate a visual SLAM module—specifically ORB-SLAM2—into the system. ORB-
SLAM2 is a feature-based simultaneous localization and mapping system that operates in real time using
monocular RGB images. Its architecture includes visual odometry, loop closure detection, keyframe
management, and global map optimization, all of which contribute to producing accurate and drift-corrected
robot pose estimates over time.
In our system, the RGB frames from the onboard camera are simultaneously fed into two parallel pipelines:
one for the DRL policy and one for the SLAM system. ORB-SLAM2 extracts ORB features from incoming
frames and performs feature matching against a local map built from keyframes. When sufficient parallax and
tracking quality are achieved, a new keyframe is inserted, and the local bundle adjustment module refines the
map and pose graph. Loop closures are detected using a bag-of-words model and verified geometrically to
eliminate accumulated drift, which is particularly important in indoor environments with repetitive structures
like corridors.
To integrate ORB-SLAM2 with the DRL framework, we implement a pose feedback channel whereby the 6-
DoF pose estimates are projected into a 2D SE(2) pose (x, y, θ) and published via ROS topics at a frequency
of 10 Hz. This pose is then used as an auxiliary input to the DRL policy network during both training and
inference. Specifically, the policy receives a concatenated observation vector consisting of the encoded visual
features and the current pose, normalized relative to the goal position. This integration enables the agent to
make spatially informed decisions, even when the visual scene does not contain unique features, by
grounding its perception in physical space. In cases where SLAM tracking fails or temporarily loses
localization (e.g., due to motion blur or occlusion), the policy falls back to a vision-only mode, relying on
learned temporal features from stacked image frames to maintain behavioral continuity.
Moreover, the SLAM map is used during training to evaluate the quality of navigation trajectories by
computing path consistency, loop closure frequency, and deviation from the shortest path. These metrics are
recorded for post-training analysis and are used to adjust reward weights to better align policy behavior with
spatial coherence. Although SLAM itself is not involved in action generation, its contribution to localization
and spatial feedback plays a critical role in stabilizing learning and improving generalization, especially in
long-horizon navigation tasks across previously unseen environments.



Finally, the integration of SLAM allows us to perform real-world deployment without relying on external
localization infrastructure such as motion capture systems or beacons. The robot can initialize its map upon
startup and incrementally build a global representation of the environment as it navigates, which is beneficial
for scalable operation in large indoor spaces. The combination of geometry-aware SLAM and perception-
driven DRL creates a complementary hybrid system that leverages the strengths of both paradigms: the
adaptiveness and generalization of learned policies, and the stability and spatial awareness of classical
mapping.

6. Simulation and Real-World Experiments
To evaluate the effectiveness and robustness of the proposed vision-based DRL navigation framework
integrated with visual SLAM, we conduct a series of experiments in both simulated and real-world
environments. The experiments are designed to measure three key performance indicators: navigation
success rate, trajectory efficiency (measured as path length ratio), and obstacle avoidance capability
(measured by collision frequency). All experiments are conducted under varied environmental conditions,
including lighting variation, dynamic obstacles, and previously unseen map layouts, to test the
generalization ability of the learned policy.
In simulation, we use the Gazebo simulator with the TurtleBot3 model and four custom indoor environments
designed with the Ignition Building Editor. These environments include office-like corridors, open
warehouse spaces, and cluttered residential scenes. Domain randomization is applied during training by
varying texture, lighting, and obstacle placement in each episode. The simulation provides ground truth for
robot pose, enabling precise trajectory comparison and quantitative evaluation.
In real-world tests, we deploy the trained policy on a TurtleBot3 Burger robot equipped with an Intel
RealSense D435i RGB-D camera and onboard Jetson Nano for real-time inference. The tests are conducted
in three indoor settings: a lab corridor, a multi-room office floor, and a cluttered home-like space with
furniture. Each test involves ten navigation tasks from random start to goal positions, and we compare our
method with three baselines: (1) a classical ROS navigation stack with AMCL and DWA planner, (2) a
vision-only DRL policy without SLAM integration, and (3) an end-to-end imitation learning model trained
on expert demonstrations.
Figure 2 shows snapshots of representative navigation tasks in both Gazebo and physical environments,
highlighting the robot's ability to navigate around obstacles, adjust course in narrow corridors, and recover
from occlusion scenarios.
We summarize the experimental results in Table 2. The success rate is defined as the percentage of trials in
which the robot reaches the goal within a time limit (3 minutes). The trajectory efficiency is measured as the
ratio of the robot’s path length to the shortest feasible path. The collision rate is the number of contacts with
static or dynamic objects per trial.

As shown in Table 2, our proposed system outperforms all baselines in terms of success rate, path optimality,
and collision avoidance. The integration of ORB-SLAM2 significantly improves spatial consistency and
reduces failure cases due to visual aliasing, especially in real-world environments where lighting and
textures differ from training data. The policy also demonstrates robust generalization, with negligible
performance degradation when transitioning from simulation to physical deployment, indicating successful
domain transfer facilitated by SLAM grounding and visual augmentation during training.



Figure 2. Navigation Execution in Simulated and Real-World Environments
These results validate the effectiveness of combining deep reinforcement learning with geometry-based
localization. The hybrid approach maintains adaptability and learning-driven behavior while benefiting from
the spatial reliability of classical SLAM, achieving high navigation success in diverse indoor scenarios.

Table 2: Quantitative Evaluation of Navigation Performance

Method Success Rate (%) Path Efficiency ↑ Collision Rate ↓

ROS Navigation Stack
(AMCL+DWA) 78 1.45 0.82

DRL w/o SLAM 85.5 1.32 0.51

Imitation Learning 72.3 1.59 0.94

Ours (DRL + SLAM) 93.6 1.18 0.27

7. Results and Discussion
The experimental results presented in the previous section demonstrate the superior performance of the
proposed vision-based DRL navigation framework integrated with ORB-SLAM2. In both simulation and
real-world deployments, the system consistently achieves high navigation success rates and low collision
frequencies, highlighting its robustness in diverse indoor environments. In this section, we provide a



detailed analysis of these results, investigate the contributing factors behind the observed performance, and
discuss the broader implications and limitations of our approach.
The most significant gain observed in our system stems from the integration of geometric localization
through SLAM with learning-based control. While vision-only DRL policies are capable of learning reactive
behaviors, they often suffer from perceptual aliasing in environments with repetitive features or poor
illumination. For instance, in our real-world corridor tests, the DRL-only policy frequently misinterpreted
similar-looking hallway sections, leading to hesitations or oscillatory behavior. By contrast, the inclusion of
SLAM-based pose feedback provides absolute spatial grounding, enabling the policy to distinguish between
locations that are visually similar but geometrically distinct. This results in smoother and more direct
trajectories, as reflected in the path efficiency values reported in Table 2.
Another key factor contributing to performance is the reward design and training strategy. By explicitly
penalizing collisions and inefficient angular motions, the learned policy favors conservative and smooth
navigation behavior. This contrasts with imitation learning models, which tend to mimic suboptimal human
demonstrations and are less adaptive when encountering novel obstacle configurations. Furthermore, the use
of domain randomization during simulation training helps bridge the sim-to-real gap, allowing the policy to
generalize well to lighting changes, motion blur, and slight variations in camera parameters.
Despite these strengths, our system is not without limitations. First, although SLAM improves localization
accuracy, it introduces additional computational overhead. On resource-constrained platforms like the Jetson
Nano, real-time performance can be affected when SLAM processing and policy inference compete for CPU
and memory resources. This issue can be mitigated through lightweight SLAM variants or by offloading
computation to edge servers via ROS2 DDS communication.
Second, the system assumes relatively static environments for consistent SLAM performance. In highly
dynamic scenarios, such as crowded spaces with many moving people or rapidly changing furniture layouts,
ORB-SLAM2 may suffer from frequent tracking loss or incorrect loop closures. Incorporating dynamic
object segmentation into the visual pipeline or using learning-based SLAM methods could help improve
robustness in such conditions.
Third, the current policy is trained for goal-directed point-to-point navigation. Extending this work to
support semantic navigation (e.g., "go to the nearest chair") would require additional modules for scene
understanding, object detection, or natural language grounding. Similarly, multi-agent scenarios and outdoor
navigation are not covered in this study and would introduce new challenges such as cooperative planning
and GPS-denied localization.
Nonetheless, the results support the hypothesis that hybrid systems leveraging both data-driven and model-
based components offer a promising path toward reliable and adaptable robot autonomy. By fusing deep
learning’s ability to generalize and adapt with SLAM’s structural consistency, our approach bridges the gap
between flexible learning and grounded execution. This hybrid design paradigm can serve as a foundation
for future research in more complex robotic tasks involving manipulation, exploration, or interaction in
human-centric environments.

8. Conclusion
In this paper, we have presented a hybrid navigation system that combines vision-based deep reinforcement
learning with a real-time visual SLAM module to enable autonomous, efficient, and reliable navigation for
mobile robots in indoor environments. Unlike traditional navigation stacks that rely heavily on handcrafted
rules and expensive range sensors, our approach leverages RGB imagery alone as the primary sensory
modality, enabling more cost-effective and scalable deployment across various robotic platforms.



The proposed framework utilizes a deep reinforcement learning policy trained using the PPO algorithm to
generate continuous control commands directly from image sequences. By integrating ORB-SLAM2 into
the system, we provide the policy with robust and drift-corrected pose feedback, which significantly
enhances spatial consistency, trajectory efficiency, and navigation reliability. Our extensive evaluation,
conducted across both simulation environments and real-world deployment on a TurtleBot3 platform,
demonstrates that the combined DRL+SLAM system achieves a higher success rate and lower collision
frequency than vision-only and classical baseline methods. Notably, the system maintains strong
generalization capabilities across previously unseen layouts and environmental conditions, validating the
benefit of combining learned behavior with geometric grounding.
The study also highlights several practical considerations for deploying such systems on resource-
constrained platforms and in dynamic environments. While our approach shows clear advantages in indoor
navigation tasks, it lays the groundwork for future research into more complex scenarios such as multi-room
semantic navigation, human-robot interaction, and long-horizon exploration in partially observable domains.
Furthermore, integrating lightweight or learning-based SLAM modules and incorporating semantic scene
understanding can further enhance the system’s flexibility and resilience in unstructured environments.
In conclusion, this work provides a compelling case for hybrid architectures in mobile robotics—where the
strengths of learning and geometric reasoning are jointly leveraged to achieve robust and adaptable
autonomy. The results encourage continued exploration of cross-paradigm integration for real-world robot
navigation and offer a reproducible framework for future extensions in academia and industry.

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep reinforcement learning,” Nature, vol.

518, no. 7540, pp. 529–533, Feb. 2015. doi: 10.1038/nature14236

[2] T. Lillicrap, J. Hunt, A. Pritzel, et al., “Continuous control with deep reinforcement learning,” Proc. of ICLR, 2016.
[Online]. Available: https://arxiv.org/abs/1509.02971

[3] Y. Zhu, R. Mottaghi, E. Kolve, et al., “Target-driven visual navigation in indoor scenes using deep reinforcement
learning,” Proc. of ICRA, 2017, pp. 3357–3364. doi: 10.1109/ICRA.2017.7989381

[4] P. Mirowski, R. Pascanu, F. Viola, et al., “Learning to navigate in complex environments, ” Proc. of ICLR, 2017.
[Online]. Available: https://arxiv.org/abs/1611.03673

[5] D. S. Chaplot, D. Gandhi, A. Gupta, et al., “Learning to explore using active neural SLAM,” Proc. of ICLR, 2020.
[Online]. Available: https://arxiv.org/abs/2004.05155

[6] J. Tobin, R. Fong, A. Ray, et al., “Domain randomization for transferring deep neural networks from simulation to the
real world,” Proc. of IROS, 2017, pp. 23–30. doi: 10.1109/IROS.2017.8202133

[7] Y. Ganin, E. Ustinova, H. Ajakan, et al., “Domain-adversarial training of neural networks,” JMLR, vol. 17, no. 59, pp.
1–35, 2016.

[8] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without a single real image, ” Proc. of RSS, 2017.
[Online]. Available: https://arxiv.org/abs/1611.04201

[9] C. Kan, J. Wang, J. Liu, et al., “ Visual SLAM meets deep reinforcement learning: A survey, ” Robotics and
Autonomous Systems, vol. 147, 103902, 2022. doi: 10.1016/j.robot.2021.103902

[10]R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D
cameras,” IEEE Trans. on Robotics, vol. 33, no. 5, pp. 1255–1262, Oct. 2017. doi: 10.1109/TRO.2017.2705103



[11]S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor policies,” JMLR, vol. 17, no. 1,
pp. 1334–1373, 2016.

[12]OpenAI, “ Proximal Policy Optimization Algorithms, ” arXiv preprint, 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347


	7.Results and Discussion

