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Abstract: This paper proposes an organ segmentation method based on the SegFormer architecture to
address the challenges of complex organ structures, blurred boundaries, and significant cross-domain
distribution differences in medical images. A hierarchical encoder is designed by combining convolutional
embedding modules with multi-head self-attention to achieve accurate modeling of multi-scale spatial
structures. In the decoding stage, a lightweight multilayer perceptron module is used to fuse multi-scale
features, avoiding information loss from traditional upsampling and enhancing boundary delineation. To
validate the effectiveness of the proposed method, a comprehensive evaluation framework is constructed,
covering various scenarios such as inference resolution changes, image quality degradation, and cross-center
distribution shifts. Experiments are conducted on a public abdominal multi-organ CT dataset. Results show
that the proposed model outperforms existing representative methods in metrics such as mloU, mDice, and
mAcc, demonstrating high segmentation accuracy and structural fidelity. Under complex test conditions, the
model maintains strong robustness across different data domains and degraded images, showing good
generalization. This study systematically explains the model from the perspectives of structural design,
fusion mechanism, and stability evaluation, further confirming the adaptability and practical value of the
SegFormer architecture in medical image structure analysis tasks.
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1. Introduction

Medical imaging has become an essential part of modern diagnostic and therapeutic workflows. Its rich
spatial and anatomical information provides objective support for lesion detection, preoperative planning, and
treatment evaluation[1]. However, manual annotation of large-scale imaging data is time-consuming, labor-
intensive, and highly subjective. In multi-center settings, it often introduces significant inter-observer
variability. Automatic organ segmentation techniques can generate accurate 3D masks within milliseconds.
This greatly improves diagnostic efficiency and consistency. As digital pathology, radiomics, and clinical
workflows become increasingly integrated, fine-grained organ segmentation not only supports radiation
planning and personalized surgical navigation but also lays the data foundation for cross-modal feature
engineering and real-world evidence collection[2].

Traditional methods based on graph cuts, energy functions, or random forests rely on low-level gradients and
local texture cues. They often under-segment or over-segment organs with blurred boundaries, morphological
variations, or imaging noise. Convolutional neural networks have partly addressed these limitations through
end-to-end learning. The introduction of U-shaped architectures and dilated convolutions enhances multi-



scale context aggregation. However, such models have limited receptive fields, constrained by kernel size and
network depth. When large field-of-view and long-range dependency are needed, stacking excessive
parameters or adding complex post-processing is required to balance accuracy and efficiency. This issue is
more severe in high-resolution 3D medical imaging scenarios.

Recently, sequence modeling paradigms led by vision transformers have opened new directions for medical
image segmentation. SegFormer adopts a concise hierarchical encoder and a lightweight all-MLP decoder. It
avoids position embeddings and fixed partitions while achieving unified modeling of global context and local
details. Its cross-scale attention fusion alleviates feature imbalance caused by organ size differences. The
smooth transition without pooling or upsampling reduces information loss from interpolation. As a result, the
model achieves strong boundary delineation and generalization while maintaining fast inference speed.
Moreover, SegFormer natively supports flexible resolution inputs and modular extensions, enabling
compatibility with 3D volumetric data and multi-modal joint modeling[3].

Organ segmentation faces multiple challenges, including anatomical variability, pathological deformation,
and protocol differences. These challenges demand strong multi-scale representation and geometric
consistency from algorithms. Applying SegFormer to medical image segmentation is expected to fully
leverage its strength in capturing long-range context, reducing structural distortion, and improving class
separability. This is especially valuable in cases involving the pancreas, liver, or prostate, where high
morphological heterogeneity and similar grayscale distribution with adjacent tissues often lead to mis-
segmentation. The model's multi-head self-attention and dynamic feature aggregation help restore fine
contours in small or low-contrast organs[4].

This study focuses on SegFormer-based medical organ segmentation. It aims to evaluate its adaptability and
scalability in real-world clinical images. On one hand, deepening the understanding of multi-scale feature
fusion in transformer-based frameworks can offer theoretical guidance for next-generation medical image
analysis. On the other hand, targeted optimization of SegFormer for inference efficiency and deployment
readiness may accelerate automatic labeling for radiotherapy planning, computer-assisted surgery, and large
cohort studies. This can bridge the gap between intelligent imaging and clinical practice, laying the
groundwork for image-driven personalized healthcare and precision diagnosis.

2. Related work

The development of medical organ segmentation techniques has undergone a significant shift from traditional
image processing methods to deep learning models[5]. Early methods mainly relied on classical techniques
such as graph cuts, region growing, and level sets. These approaches used handcrafted low-level features like
edges, textures, and gradients to identify organ boundaries. However, they often struggled with accuracy and
generalization when handling highly variable or blurred medical images. In multi-center and multi-device
acquisition settings, traditional algorithms show high dependence on image quality and preprocessing. Their
modeling capacity lacks robustness and fails to adapt to complex organ structures with varying shapes|[6].

With the rise of deep learning, convolutional neural network-based segmentation methods have become
mainstream. Encoder-decoder architectures, especially those based on the U-Net structure, are widely applied
in medical imaging. These models enhance segmentation accuracy by combining shallow boundary features
with deep semantic features through skip connections. Extensions such as dilated convolutions, multi-scale
pyramids, attention mechanisms, and feature pyramid networks further improve the ability to capture large
contextual information and handle organs of different scales. However, such models still face limitations in
local receptive field size, long-range dependency modeling, and adaptability to non-Euclidean spatial
structures. These issues become more pronounced when organs are interlaced, images have high resolution,
or lesion boundaries are unclear[7].

To address the limitations of convolutional models in global context modeling, vision transformers have been
introduced into medical image segmentation tasks. These models use self-attention to establish long-range



dependencies across feature hierarchies. Multi-head mechanisms enhance feature complementarity across
channels. This allows the model to better capture organ boundaries, shapes, and spatial relations. Some
architectures combine local window attention with multi-scale representations to balance global modeling
with computational efficiency. These improvements align with the practical demands of high-resolution
medical imaging. However, native vision transformers face limitations in low-level semantic expression and
high-resolution modeling. There is a need for lightweight and hierarchical variants to meet the dual demands
of accuracy and inference speed in medical segmentation[8].

SegFormer is an emerging transformer-based segmentation architecture. It maintains global modeling
capabilities while incorporating multi-scale feature extraction, no positional encoding, and a lightweight
decoder. These design choices significantly enhance the model's structural representation and deployment
efficiency. SegFormer has already shown strong performance in natural image segmentation, especially in
terms of boundary accuracy and category consistency. This provides a structural basis for its application in
medical imaging. Existing studies have applied SegFormer to unimodal organ segmentation tasks such as CT
and MRI. They have confirmed its stability in small-sample and transfer learning settings. However, the
mechanism behind its multi-scale feature fusion in medical contexts remains underexplored. Research on
multimodal fusion, 3D structure modeling, and adaptation to complex clinical scenarios is still limited.
Systematic theoretical and practical studies are needed to address these gaps.

3. Proposed Approach

This study proposes a medical image organ segmentation method based on SegFormer. By constructing an
efficient multi-scale encoding structure and a lightweight decoding module, it achieves accurate modeling
and boundary recovery of organ regions. The input medical image first passes through a four-layer scale-
progressive hybrid convolution embedding module. Each layer extracts local features with different receptive
fields and retains the complementarity of spatial resolution and semantic expression. The model architecture
is shown in Figure 1.
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Figure 1. Framework of the Proposed SegFormer-Based Segmentation Model
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Suppose the original input image is /€ , and the output feature of the Ith layer is denoted as
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F, e R* 2. The hierarchical design ensures that the encoder can capture fine-grained structure and global
semantics.

After each layer of feature extraction, a multi-head self-attention module based on the attention mechanism is

used for context modeling. Specifically, let the input feature be X € RV, where N is the number of
positions after flattening, and the attention mechanism is calculated as follows:

T
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Where Q=XWC K =XW* ¥V =XW" is the linear transformation of query, key, and value. The multi-

head mechanism expands the above operation into h parallel branches, and finally aggregates them into
output feature Z:
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Through this mechanism, the model can capture long-range dependencies and diverse semantic clues at
different scales, providing rich expressions for subsequent segmentation predictions.

In the feature fusion stage, this paper adopts an MLP decoder without positional encoding to achieve
consistent alignment and semantic enhancement of cross-layer features. After linear mapping and upsampling
of multi-scale features {F,F,,F;,F,}, a unified feature representation F * 1is generated through weighted

fusion:
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w, 1s a learnable scale weight parameter, and Upsample means restoring low-resolution features to the target

output size. This module avoids the complex upsampling path and channel alignment operations in traditional
decoders, significantly reduces the number of parameters and computational complexity, and enhances the
ability to perceive the boundaries of organs of different scales.

The final prediction stage maps the fused features to the category dimension through a linear classification
head and outputs a segmentation mask Y e R where C' is the number of target categories. The
prediction is normalized using a pixel-by-pixel multi-category softmax function, defined as:

eXp(F *i,j,c)
=
%
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This probability distribution indicates the confidence that each pixel belongs to each category, providing a
basis for subsequent evaluation and optimization. In addition, to enhance the model's sensitivity to boundary

areas, a loss function based on the joint optimization of cross entropy and Dice Loss is used in the training
phase:

}Ii,j,c =

L= /11 'LCE + /12 'LDice

By comprehensively considering the global distribution and regional overlap, the model's ability to model
organ structure integrity and boundary continuity is effectively improved.



4. Dataset Description

This study uses the Synapse multi-organ segmentation dataset to evaluate the adaptability and robustness of
organ segmentation models in real-world medical imaging scenarios. The dataset is derived from abdominal
CT scans and includes three-dimensional annotations of multiple organs. It covers eight common organ
categories, including liver, spleen, pancreas, right kidney, left kidney, stomach, aorta, and gallbladder. The
dataset features complex anatomical structures and high inter-subject variability, offering diverse structural
learning signals for models.

The original CT images are in DICOM format and are converted to NIfTI files through preprocessing. The
voxel resolution is standardized to (1.0, 0.79, 0.79) mm. Each image has dimensions of 512 x 512 x D, where
D represents the number of slices in each volume. Pixel-wise annotations are provided for each organ. All
labels have been reviewed and quality-controlled by clinical experts to ensure high-quality structural
segmentation boundaries. The spatial distribution of organs varies significantly across images. The dataset
includes different scanning angles, organ sizes, and contrast levels, which support a comprehensive
evaluation of model generalization.

This dataset is widely used in multi-organ segmentation research. It offers a stable evaluation benchmark and
presents significant challenges. It is especially suitable for testing the model's ability to handle multi-scale
structures, blurred boundaries, and inter-class similarity. In practical modeling, the dataset is typically divided
into training and testing sets. Patient-level separation is strictly maintained to rigorously assess model
performance in deployment and its ability to generalize across patients.

5. Experimental Evaluation
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Tablel: Comparative experimental results

Model Miou Mdice Mace
P-TransUNet[9] 78.42 85.01 92.36
DS-TransUNet[10] 79.15 85.67 93.02
PMFFNet[11] 80.03 86.42 93.58
EG-TransUNet[12] 81.37 87.09 94.11
MicFormer[13] 81.89 87.65 94.43
Ours 83.74 89.02 95.08

The results in the table show that various Transformer-based medical image segmentation models achieve
strong performance on mainstream evaluation metrics such as mloU, mDice, and mAcc. This demonstrates
the clear advantage of self-attention mechanisms in modeling long-range dependencies and structural
boundaries of organ regions in medical images. Among them, P-TransUNet and DS-TransUNet, as early
Transformer-based models, already exhibit stronger contextual representation capabilities than traditional
CNNs. However, they still face accuracy limitations in modeling boundaries of complex organ shapes, with
mDice not exceeding 86.

With further architectural improvements, PMFFNet and EG-TransUNet enhance multi-scale fusion and
cross-layer feature integration. Their models achieve 80.03 in mloU and 94.11 in mAcc. These results
indicate that enhanced feature interaction helps mitigate modeling challenges caused by scale differences



among organs. MicFormer introduces a lightweight multi-head mechanism and position-aware strategy. It
achieves a balanced trade-off between accuracy and efficiency, reaching 87.65 in mDice. This confirms that
moderate structural compression can preserve expressive power while improving overall performance.

In comparison, the method proposed in this study achieves the best results across all three metrics. The model
reaches 83.74 in mloU and 89.02 in mDice. These results demonstrate stronger capability in organ contour
delineation, fine-grained region modeling, and cross-scale feature alignment. This improvement benefits from
the unified hierarchical feature extraction and position-free lightweight decoder design in the SegFormer
architecture. The model enhances contextual modeling between internal organ structures and boundaries
while maintaining inference efficiency.

Additionally, the proposed model leads in category-level accuracy with an mAcc of 95.08. This indicates
excellent sensitivity and stability not only for large and common organs but also for small, low-contrast, or
blurred regions. These results suggest that the proposed method has strong potential for real-world
deployment in multi-organ segmentation tasks. It meets the technical requirements of high-precision medical
image analysis.

This paper also gives an evaluation of the sensitivity of the model performance to changes in inference
resolution, and the experimental results are shown in Figure 2.
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Figure 2. Evaluating the sensitivity of model performance to changes in inference resolution

The figure shows that the model's performance varies under different inference resolutions, indicating the
direct impact of resolution on segmentation accuracy. At a low resolution such as 128x128, the scores of
mloU and mDice drop significantly. This suggests a severe loss of spatial details, leading to blurred
boundaries and unclear structural contours, which reduces the overall prediction accuracy. It also reflects the
high sensitivity of organ segmentation tasks to spatial resolution, especially in areas with complex shapes or
low contrast.

As the resolution increases to 512x512, all three metrics reach their peak. The mloU, mDice, and mAcc
approach or exceed thresholds of 83, 89, and 95, respectively. This indicates that the model achieves a good
balance between semantic context modeling and spatial detail representation at this resolution. The
SegFormer architecture demonstrates its strength in multi-scale feature aggregation and long-range
dependency modeling. It also adapts well to the challenges of varying organ sizes and spatial distributions.

At even higher resolutions, such as 768x768 and 1024x1024, although mAcc remains high, the mloU and
mDice scores slightly decrease. This suggests that excessive resolution may introduce sparse features or



redundant background noise, weakening the model's ability to focus on local structures and boundaries. The
performance decline indicates that higher resolution does not guarantee a linear improvement. The model
needs to find a proper trade-off between computational cost and feature representation.

Overall, the proposed model performs consistently well across medium to high resolutions. The best results
are achieved at 512x512, demonstrating the adaptability and robustness of the SegFormer architecture in real
clinical inference settings. These findings offer practical guidance for configuring inference parameters in
high-precision and efficient organ segmentation systems for medical imaging.

This paper also gives the impact of cross-center data distribution differences on the generalization ability of
the model, and the experimental results are shown in Figure 3.
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Figure 3. The impact of cross-center data distribution differences on model generalization ability

The figure clearly shows that model performance drops across all segmentation metrics as the data center
shifts. This trend reflects the significant impact of cross-center distribution differences on model
generalization. It suggests that even Transformer architectures with strong structural modeling capabilities
cannot fully resist domain shifts caused by variations in imaging protocols, device settings, and patient
populations across medical institutions. This is especially evident when no domain adaptation mechanism is
used.

For the mloU metric, the score decreases from 83.74 at Center-1 to 76.63 at Center-5, a drop of nearly 7
percent. This indicates a decline in the model's ability to localize organ boundaries as data distribution drifts.
Although the proposed model has strong multi-scale modeling capability, it is still affected by external
factors such as anatomical variation and image quality fluctuations when encountering unseen centers. The
decline is particularly noticeable in complex organ edges or low-contrast regions, where missegmentation
becomes more likely.

The mDice and mAcc metrics also show a downward trend, decreasing from 89.02 and 95.08 to 82.36 and
89.03, respectively. These results suggest that both region coverage and pixel-level accuracy are impacted by
cross-center factors. Notably, the decrease in mAcc is relatively moderate. This implies that the model
maintains some stability in coarse structural recognition but is more sensitive in segmenting small organs and
capturing boundary details. This is closely related to differences in organ size, shape, and imaging appearance.

This paper also presents a stability test of the effect of image quality degradation (noise/blur) on the model
performance, and the experimental results are shown in Figure 4.
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Figure 4. Image quality degradation (noise/blur) stability test on model performance

The figure shows the performance trend of the proposed model under different levels of image quality
degradation. A clear decline in stability is observed. As images degrade from clear to mildly, moderately, and
severely affected by noise or blur, the mloU, mDice, and mAcc scores all decrease. This indicates the model's
sensitivity to input image detail quality. In regions with complex structures or blurred boundaries, noise and
blur further weaken the model's ability to locate and interpret key areas.

In the mloU curve, the bar heights drop significantly with increasing degradation. This reflects a strong
influence of image quality on spatial structure recognition. Under severe interference, the model's pixel-level
classification consistency is reduced. This often causes boundary shifts or region merging, leading to
distorted predictions. These results show that although SegFormer has strong global context modeling
capability, it still relies on local texture and edge cues.

The mDice curve highlights changes in the model's perception of region overlap. From clear images to
severely blurred ones, the similarity between predicted and ground truth masks declines significantly. This
trend reveals that noise disrupts boundary formation in feature space. It also shows that in clinical images
with artifacts or scanning motion, the output quality may degrade, especially in regions between organs and
adjacent tissues, where misclassification becomes more likely.

Meanwhile, the mAcc metric remains at a relatively high level but still shows a steady decline. This suggests
that pixel-level accuracy is also constrained by input image quality. The results confirm the importance of
high-quality input for medical image segmentation models. They also suggest that image quality assessment
or preprocessing mechanisms could be introduced during deployment to enhance robustness and clinical
usability. Overall, this experiment highlights the stability of the model under degraded image conditions and
provides valuable insight for real-world applications.

6. Conclusion

This study proposes a SegFormer-based segmentation method for organ segmentation in medical images. The
goal is to improve the modeling of multi-scale structures, blurred boundaries, and complex spatial
dependencies. The method integrates a unified encoder that combines convolutional embeddings with multi-
head attention and a lightweight decoder without positional encoding. This design achieves an effective
balance between structural representation and inference efficiency. The model demonstrates strong



segmentation performance across multiple evaluation metrics. It shows clear advantages in boundary
delineation, local alignment, and long-range modeling. These strengths provide a new technical pathway for
structural recognition in complex clinical images.

Through a comprehensive sensitivity analysis under different inference resolutions, cross-center data
distributions, and image degradation conditions, this study further evaluates the model's stability and
generalization in real-world applications. Results show that the proposed method not only has strong
representation capability but also maintains relatively stable predictions under variations in input quality and
data sources. This robustness supports its deployment in practical medical imaging systems. It also helps
reduce performance degradation caused by differences in imaging devices or scanning protocols and
enhances the model's adaptability in multi-center and multi-task environments.

The proposed organ segmentation method has broad potential in clinical applications. It can support
automatic radiation planning, surgical navigation, and clinical decision-making. It also enables high-quality
structural masks for large-scale medical image annotation and knowledge modeling. The method has good
scalability. In the future, it can be extended to multi-modal imaging, multi-stage segmentation pipelines, and
3D medical image structure modeling. These directions contribute to building an efficient, accurate, and
intelligent medical image processing system.

Future work can focus on the following aspects. First, integrating domain adaptation and meta-learning
strategies may improve the model's transferability across devices, populations, and disease types. Second,
exploring knowledge distillation and model pruning can further compress the model while preserving
accuracy. This supports deployment on edge devices and mobile health platforms. Third, combining with
radiomics analysis and pathological modeling may enable the construction of a unified structure-function-
pathology analysis system. This can support intelligent clinical workflows driven by structural understanding.
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