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Abstract: This paper studies the consistency and fault tolerance mechanism in distributed file systems,
aiming to evaluate and optimize the performance of the system under different conditions such as network
delays and node failures. In response to the consistency problem, this paper designs a test scheme based on
strong consistency and eventual consistency models, and analyzes the performance changes of the system
under different operating loads. Through fault tolerance testing, various node failure scenarios are simulated
to evaluate the effectiveness of replica recovery and redundant storage mechanisms in ensuring data
consistency and system availability. The experimental results show that the strong consistency model has
advantages in ensuring data consistency, but its performance is poor under high load or high latency
conditions. Although the eventual consistency model sacrifices a certain degree of immediate consistency, it
has obvious advantages in throughput and response time. The system can effectively recover data when
facing a single node failure, but as the number of failed nodes increases, the recovery time and the
probability of data loss also increase. Finally, this paper proposes an optimized distributed file system
design scheme, which combines dynamic consistency strategy and replica management mechanism to
improve the fault tolerance and performance of the system in complex environments, and provides new
ideas and methods for the practical application of distributed storage systems.
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1. Introduction
In modern computer systems, distributed file systems (DFS) are an important storage architecture that is
widely used in large-scale data management, cloud computing, the Internet of Things, and other fields. With
the rapid growth of data volume and the continuous development of business needs, traditional centralized
storage systems have been unable to meet the needs of high availability, high performance, and large-scale
storage. The design of distributed file systems aims to improve the scalability, reliability, and access speed of
the system by distributing data on multiple nodes[1,2]. However, in a distributed environment, how to ensure
data consistency and fault tolerance has become a core issue that must be faced when designing an efficient
and reliable distributed file system[3].
Consistency is a key challenge in distributed systems, especially in file system design. How to ensure that
data between multiple nodes remains consistent and avoid data inconsistency caused by network delays or
node failures is a complex and critical task[4]. Common consistency models include strong consistency,
eventual consistency, causal consistency, etc. Each model has different trade-offs between performance and
reliability[5]. Strong consistency requires that all operations are executed in order to ensure that the data seen



by the user is always the latest, while eventual consistency allows the system to be inconsistent for a short
period of time, but eventually it can be restored to consistency. The choice of these consistency models
directly affects the performance, response time, and user experience of the file system[6].
The role of fault tolerance mechanism in distributed file systems cannot be ignored either. In a distributed
environment, problems such as node failure, network partition, and hardware failure often occur. Therefore,
the system must have a certain
fault tolerance capability to ensure that it can continue to provide services and ensure data reliability and
integrity when some nodes fail or the network is abnormal. To this end, distributed file systems usually use
data replication, redundant storage, and checkpoint technology to improve the fault tolerance of the system.
In the process of data storage and management, the system needs to ensure that the lost data can be quickly
restored while ensuring performance, and provide a fault tolerance mechanism to deal with emergencies such
as node failure[7].
There is an inevitable conflict between consistency and fault tolerance. Improving consistency often
sacrifices the availability and performance of the system, while enhancing fault tolerance may affect the
guarantee of data consistency. Therefore, when designing a distributed file system, how to find a balance
between consistency, availability, and fault tolerance becomes a key design issue. Modern distributed file
systems such as HDFS, Ceph, and Google File System (GFS) have optimized consistency and fault tolerance
mechanisms to varying degrees, combining data replication, version control, snapshot technology, and other
means to meet the needs of different application scenarios.
This paper will focus on the design of consistency and fault tolerance mechanisms in distributed file systems.
First, the general architecture and basic concepts of distributed file systems will be introduced. Then, the
impact of different consistency models on system performance and reliability will be analyzed, and how to
choose an appropriate consistency strategy in practical applications will be discussed. Next, the paper will
explore the fault-tolerant mechanism in distributed file systems, including data redundancy, backup, fault
recovery and other technologies, and evaluate its performance and efficiency under different fault modes.
Finally, this paper will combine actual distributed file system cases to propose a new design solution to solve
the problems existing in the consistency and fault tolerance of current distributed file systems, and look
forward to future research directions.

2. Related work
The integration of deep learning into distributed system design has significantly advanced the capabilities of
consistency management and fault tolerance. Traditional distributed systems have long grappled with the
challenges of ensuring strong consistency, low latency, and high availability in dynamic, failure-prone
environments. With the advent of data-driven intelligence, recent developments emphasize intelligent
modeling techniques to understand and predict distributed behavior patterns, detect anomalies, and
proactively respond to system perturbations. These advancements not only reduce operational overhead but
also improve system robustness and self-adaptability.
For instance, attention-based modeling has been leveraged to characterize microservice access dynamics and
capture latent dependencies across service invocations [8], while structural encoding methods provide
context-aware representations that enhance the accuracy of root cause detection in complex system failures
[9]. In federated contexts, contrastive learning frameworks have been applied to uncover behavioral
anomalies without compromising user-level data privacy, addressing a core concern in decentralized
environments [10].
Network latency prediction remains critical in maintaining consistency strategies across geo-distributed
deployments. Deep regression approaches have been effective in forecasting transmission time under
fluctuating conditions and workload shifts [11]. Complementary to this, time-series neural architectures such
as LSTMs and temporal convolutional networks have been deployed for proactive fault prediction and



anomaly anticipation [12], enabling early intervention before system degradation occurs. Furthermore,
federated meta-learning facilitates personalized fault detection by enabling local models to generalize across
heterogeneous devices and infrastructures [13].
Reinforcement learning (RL) continues to gain traction for dynamic load balancing and long-term system
stabilization. Control-based techniques offer fine-grained scheduling policies tailored to real-time system
metrics [14], while meta-RL frameworks adaptively scale to microservice architecture changes, preserving
responsiveness and throughput under evolving conditions [15]. Emerging collaborative paradigms, such as
multi-agent reinforcement learning, further extend scalability by allowing distributed agents to jointly
optimize global objectives like resource elasticity, failover coordination, and system reconfiguration [16].
Beyond system-specific techniques, model optimization strategies drawn from natural language processing
have informed distributed system design. Parameter-efficient tuning [17], sensitivity-aware pruning [18], and
instruction-aligned coordination models [19] not only improve the inference efficiency of machine learning
modules embedded in distributed systems but also support modular upgrades and transfer learning across
service versions. Similarly, cache management optimization via deep Q-networks reflects a growing trend of
applying RL to backend performance tuning, with demonstrable improvements in response time and cache hit
ratios [20].
In edge and mobile computing contexts, where compute resources are constrained, lightweight modeling is
paramount. Optimization strategies based on MobileNet architectures and tailored edge inference pipelines
have been adopted for real-time monitoring and control tasks [21]. Advanced generative models such as
conditional GANs, combined with temporal autoencoders, enable high-fidelity anomaly detection in
microservices and IoT streams [22]. Moreover, unsupervised detection frameworks incorporating noise
injection and feature scoring have emerged as strong baselines for system integrity monitoring in the absence
of labeled fault data [23].
Architectural innovations from the computer vision domain also offer valuable analogies. Vision-oriented
multi-object tracking algorithms and spatial-temporal attention mechanisms, while originally designed for
dynamic scene understanding, can be repurposed for temporal consistency assurance and distributed data
synchronization tasks [24][25]. These cross-domain insights underscore the growing convergence of AI
subfields in solving distributed systems challenges.
Additionally, the paradigm of federated optimization has expanded into recommendation and personalization
systems, integrating user interest modeling with differential privacy constraints [26], and leveraging subspace
ensemble learning to manage non-IID and complex data distributions [27]. Causal modeling frameworks
have also been introduced to reinforce robustness in fault detection, particularly under conditions of
uncertainty and partial observability [28]. Meta-learning techniques, by enabling cross-task generalization,
support flexible scheduling strategies in environments with varying workload patterns [29].
Large language model (LLM)-centric architectures are increasingly relevant to system control. Retrieval-
augmented generation frameworks support complex decision queries in orchestration tasks [30], while
structural reconfiguration strategies enable parameter-efficient adaptation of control policies across
deployment domains [31]. Even domain-specific models such as spatial attention-based lesion segmentation
networks contribute transferable architectural principles for multi-scale feature aggregation and hierarchical
decision-making in distributed systems [32].
Taken together, these diverse yet interconnected advancements collectively establish a deep methodological
foundation for integrating machine learning into the consistency and fault tolerance design of distributed
systems. By harnessing deep learning’s predictive, adaptive, and generative capabilities, modern distributed
infrastructures are becoming more resilient, self-healing, and scalable, capable of autonomously navigating
operational uncertainty and meeting the performance demands of increasingly complex application
environments.



3. Proposed Consistency and Fault Tolerance Framework

In the design of distributed file systems, consistency and fault tolerance mechanisms are crucial parts. In
order to solve the data consistency problems that may exist in distributed systems, this paper proposes a
solution based on an improved consistency protocol and a fault-tolerant algorithm. First, in terms of
consistency, we introduce a timestamp-based distributed lock mechanism and a consistency verification
algorithm to ensure that data operations in the system are executed in the expected order. Secondly, in the
design of fault-tolerant mechanisms, we adopt data redundancy and dynamic replica management strategies
to ensure that the system can maintain availability and data integrity as much as possible in the event of node
failure or network interruption. Its overall architecture is shown in Figure 1.

Figure 1. Overall model architecture

First, for the consistency problem, we use a timestamp-based distributed lock protocol to avoid conflicts and
ensure consistency. Assume that there are n nodes in a distributed environment, and timestamp iT records
the time of each node operation. For any two operations 1O and 2O , if 1O is executed at time 1T and

2O is executed at time 2T , and 21 TT  , then 1O should be executed before 2O . To ensure this order, we
define a global clock globalT and set the timestamps of all nodes to follow the following formula:
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Among them, '
iT is the local timestamp, and globalT is the global clock, which is maintained by the

coordination node and synchronized with the operation of the system. Operation conflicts between nodes
can be avoided by comparing timestamps. If the order of 1T and 2T conflicts, the system will block
subsequent operations until the previous operation is completed, thereby ensuring the consistency of
operations.
In the design of the fault-tolerant mechanism, we introduced data replicas and dynamic replica allocation
strategies. In traditional distributed file systems, the number of replicas is usually fixed, while the dynamic
replica allocation strategy we designed can dynamically adjust the number of replicas based on factors such
as node load, network latency, and hardware failure. Assume that the number of replicas of a file f is r,
and the file is stored on node rNNN ,...,, 21 . The storage time of each replica if is iT , and the following
conditions are met:

),...,,max( 21max rTTTT 



Where maxT is the maximum storage time of all replicas. To ensure fault tolerance, the system needs to
select other replicas for recovery when node iN fails. The recovery process is implemented by the
following formula:
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Among them, recoverf is the restored file content, which is the weighted average of all replica contents.
Through this strategy, the system can recover data between multiple replicas while ensuring that data is not
lost in the event of a failure.
In addition, in the fault tolerance mechanism of the file system, we also adopt a storage scheme based on
redundant coding to improve the system's tolerance to node failures. Specifically, using linear block coding
(LRC) or Reed-Solomon coding, we split the file into multiple data blocks and distribute them among
different nodes. Assuming that the file is split into k data blocks and m redundant blocks are generated, the
storage process can be expressed by the following formula:

),...,,,,...,,()( 2121 mk RRRDDDfFile 

Among them, iD represents the original data block of the file, and iR is the redundant block. The
generation of redundant blocks follows the following encoding rules:
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Through this redundant storage method, the system can restore the file content through the remaining k data
blocks when any m nodes fail, greatly improving the system's fault tolerance.
In order to optimize the performance of the system and improve the efficiency of fault recovery, we also use
a two-phase commit protocol (2PC) based on distributed transactions to coordinate consistency operations
between nodes. Assume that the set of operations in the system is },...,,{ 21 nOOOO  , and each operation is
jointly participated by multiple nodes. For each operation iO , the system first performs a pre-commit
operation on the participating nodes, and then decides whether to commit the operation based on the
responses of all nodes. The formula is as follows:
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This approach ensures consistency and fault tolerance when multiple nodes operate together, and the system
can maintain consistency even if some nodes fail.
In summary, this method solves the consistency and fault tolerance problems in distributed file systems by
introducing technologies such as timestamp-based distributed lock protocols, dynamic copy management,
and redundant coding. Through theoretical derivation and algorithm implementation, we can improve the
system's fault tolerance while ensuring system consistency, ensuring that the system can still operate
efficiently under various fault conditions.

4. Experimental Setup and Results
In this study, the experiment used a distributed file system simulation dataset from a public dataset, which is
designed to evaluate the consistency and fault tolerance performance of distributed file systems under
different node failure and network delay conditions. The dataset contains file storage operation records from
multiple data centers. Each operation includes file read, write, delete and other operation types, and records
metadata such as the timestamp of the operation, the size of the operation file, the target node information
and the operation result. The dataset is large in scale and covers a variety of typical file operations from



different environments, providing rich experimental data for evaluating the performance of distributed file
systems.
The total size of the dataset is about 2TB, including operation records of 100,000 files, with file sizes ranging
from a few KB to several MB, reflecting the operation characteristics under different loads and data storage
requirements. Each record contains the operation type, node identifier, timestamp, file path of the operation
and a mark of whether the operation is successful or not. In order to simulate the actual distributed
environment, the dataset also introduces factors such as node failure, network delay, bandwidth fluctuation,
etc. to test the fault tolerance and consistency guarantee of the file system in an unstable environment. The
timestamp of each operation is generated according to the operation delay and synchronization mechanism of
the real system, so it can effectively simulate the delay and concurrent operations in actual applications.
This dataset is designed to cover a variety of situations in distributed file systems in practical applications,
including common problems such as node failures, network partitions, and operation conflicts. Therefore, it
provides an ideal experimental platform for verifying the consistency and fault tolerance mechanism
proposed in this paper. Through this dataset, the experiment can analyze in detail the system's recovery
capability, performance loss, and consistency maintenance effect under different fault conditions, thereby
verifying the effectiveness and robustness of this research method in practical applications.
In order to further intuitively perceive the dataset, this paper first gives the Operation Type Distribution, as
shown in Figure 2.

Figure 2. Operation Type Distribution
Figure 2 shows the distribution of file system operation types (read, write, delete). Through this figure, we
can see the proportion of different operation types in the experimental data. The frequency of each operation
type is approximately the same, indicating that the frequency of these operations executed in the system is
similar. Furthermore, a distribution diagram of file sizes is given, as shown in Figure 3.
The file size distribution simulates the frequency of occurrence of different file sizes (in MB) in the system.
The distribution of file sizes is shown using histplot, and the KDE curve helps us observe the smooth
distribution of the data.



Figure 3. Operation Type Distribution
In a distributed file system, consistency is one of the key factors to ensure the correctness of the system.
Different consistency models have different trade-offs in performance and data consistency. Strong
consistency ensures the order of each operation and ensures that all replicas in the system maintain the same
data content at any time, but it may sacrifice the response time and throughput of the system. Eventual
consistency allows the system to be inconsistent for a short period of time until all replicas of the system are
finally synchronized. This method can improve the performance of the system, but short-term data conflicts
or inconsistencies may occur. In order to evaluate the performance of the algorithm in this paper in practical
applications, this experiment designs a scenario in which multiple nodes access the same file concurrently.
By simulating different consistency models, it tests whether the system will have data conflicts or
inconsistencies during operation. At the same time, the performance differences between strong consistency
and eventual consistency under different operations are compared, including indicators such as response
time, throughput, and fault recovery capability. The experimental results are shown in Table 1.

Table 1: Experimental Results

Operation Type Consistency Model Response time (ms) Throughput (MB/s)
Read Strong consistency 250 80
Read Eventual consistency 200 100
Write Strong consistency 300 75
Write Eventual consistency 250 95
delete Strong consistency 275 85
delete Eventual consistency 230 105

According to the experimental results in Table 1, we can clearly see the difference in response time and
throughput performance of the system under different operation types under the strong consistency and
eventual consistency models. The strong consistency model guarantees the order and consistency of each
operation, but its performance is sacrificed. Specifically, the response time of the read operation under the
strong consistency model is 250 milliseconds and the throughput is 80MB/s. Compared with the 200
millisecond response time and 100MB/s throughput of the read operation under the eventual consistency
model, the strong consistency is obviously inferior in performance. Similarly, the response time and
throughput of the write and delete operations also show the performance bottleneck of the strong consistency



model. Especially under high load conditions, strong consistency may cause large delays and lower
throughput.
However, although the eventual consistency model sacrifices a certain degree of instant data consistency, it is
significantly better than the strong consistency model in throughput and response time. The write and delete
operations under the eventual consistency show higher throughput and shorter response time, which is also in
line with the characteristics of the eventual consistency model-improving the performance of the system by
relaxing the consistency requirements. Specifically, the write operation throughput under the eventual
consistency model reaches 95MB/s, while the write throughput of the strong consistency model is only
75MB/s. This shows that when processing large-scale data operations, eventual consistency can effectively
improve the efficiency of the file system, especially in a distributed environment, when the network
conditions are unstable, eventual consistency can provide the system with higher fault tolerance and
performance.
In a distributed file system, fault tolerance is a key feature that ensures that the system can continue to run
stably in the face of hardware failures or network problems. In order to evaluate the fault tolerance of a
distributed file system, this experiment designed a variety of node failure scenarios and tested the
performance of the system under different numbers of node failures. The experiment simulated common
failure scenarios in distributed systems by failing some nodes to check whether the system can recover lost
data through replicas. During the experiment, we focused on measuring the recovery time, the probability of
data loss, and the effectiveness of the replica recovery mechanism. Different failure scenarios include single
node failure, multiple node failures at the same time, etc., to test the system's recovery capability and
performance under these conditions. The experimental results are shown in Table 2.

Table 2: Fault tolerance testing

Failure scenario Number of failed
nodes

Recovery time
(seconds)

Probability of data loss

Single node failure Strong consistency 5 0%

Two nodes fail simultaneously Eventual consistency 10 2%

Three nodes fail simultaneously Strong consistency 15 5%

Four nodes fail simultaneously Eventual consistency 20 8%

Five nodes failed simultaneously Strong consistency 30 12%

According to the experimental results in Table 2, we can observe the fault tolerance of the distributed file
system when facing different numbers of node failures. In the case of a single node failure, the system can
recover quickly, the recovery time is only 5 seconds, and there is no data loss, which proves that the system
has high fault tolerance under the strong consistency model. When the number of faulty nodes increases, the
recovery time of the system gradually increases, and the probability of data loss also increases. For example,
when two nodes fail at the same time, the recovery time is 10 seconds and the probability of data loss is 2%.
As the number of faulty nodes increases, the recovery time and the probability of data loss show an upward
trend, especially when five nodes fail at the same time, the recovery time reaches 30 seconds and the
probability of data loss is 12%.
From these results, it can be seen that as the number of node failures increases, the system's recovery ability
and data integrity protection are gradually affected. This is consistent with the fault-tolerant design based on
replicas and redundancy mechanisms proposed in this paper, indicating that replica recovery can alleviate the
impact of node failures to a certain extent, but when the node failure is serious, the system's recovery



efficiency and data protection still have certain challenges. Especially when using the final consistency model,
the fault tolerance is reduced, resulting in an increased probability of data loss when large-scale node failures
occur.
These experimental results also support the viewpoint put forward in the method part of this paper, that is, to
improve the fault tolerance of the system through replication and redundancy technology, it is necessary to
adjust the consistency strategy under different failure scenarios. Although the eventual consistency model
performs better in terms of recovery efficiency, there are certain risks in controlling data loss, while the
strong consistency model provides higher data protection, but it also brings correspondingly longer recovery
time and lower system throughput. Therefore, the design scheme of this paper can dynamically adjust the
consistency strategy under various failure scenarios to optimize the balance between recovery time and data
protection.

5. Conclusion and Future Work
This paper deeply studies the consistency and fault tolerance mechanisms in distributed file systems, and
evaluates the performance and fault tolerance of the system under different consistency models through a
series of experiments. The experimental results show that the strong consistency model can provide a high
degree of data consistency guarantee, but it may affect the performance of the system under high load or high
latency conditions. The final consistency model has advantages in performance, especially in high latency
environments, which can significantly improve throughput and response speed, but at the same time, it may
cause data inconsistency or loss under certain circumstances. The fault tolerance strategy based on replica
and redundancy mechanisms shows strong recovery capabilities in the face of node failures, but with the
increase in the number of faulty nodes, the system's recovery efficiency and data protection capabilities are
also facing challenges.
Future research can further explore how to achieve dynamic switching between multiple consistency models,
so as to select the most suitable model under different network conditions and loads and optimize system
performance. At the same time, with the continuous development of cloud computing and big data
technology, the scale of distributed file systems will continue to expand. How to ensure efficient performance
and low latency in large-scale clusters and multi-node failure scenarios is still a problem that needs to be
solved urgently. In the future, the adaptability and recovery capabilities of the system in a dynamic
environment can be further improved by introducing advanced technologies such as intelligent scheduling
and deep learning.
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