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Abstract: This paper addresses the problems of low cache allocation efficiency and unstable strategies
caused by multi-tenant resource competition in edge computing environments. A game-driven resource
allocation mechanism based on multi-agent reinforcement learning is proposed. The mechanism consists of
two core modules: the Game-aware Adaptive Policy Optimization (GAPO) framework and the State-aware
Decentralized Agent Network (SADAN). GAPO introduces a local incentive adjustment function that
guides agents to make more reasonable resource allocation decisions in dynamic competitive environments.
It helps avoid convergence to suboptimal game equilibria. SADAN combines neighborhood state interaction
with structured state encoding. It enables agents to capture system dynamics under partial observability and
enhances policy coordination and learning efficiency. The cache resource allocation problem is modeled as
a multi-agent game process. The proposed learning framework is applied to an edge caching system and
evaluated using real-world datasets and a constructed simulation environment. Experimental results show
that the proposed method outperforms existing approaches in key metrics such as cache hit rate, response
delay, and policy convergence speed. Moreover, the method demonstrates strong robustness and stable
system performance under varying conditions. These include multi-tenant scaling, reduced observation
completeness, and changing resource constraints. The results effectively validate the adaptability and
superiority of the proposed mechanism in edge cache resource allocation tasks.
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1. Introduction

With the rapid development of 5G, the Internet of Things, and big data applications, the number of network
terminal devices is growing explosively[1]. Users are demanding services with lower latency and higher
bandwidth. Traditional centralized cloud computing architectures struggle to meet the real-time response
requirements of emerging applications due to physical distance and resource bottlenecks. As a result, edge
computing has been proposed as an important complement to cloud computing. It moves computing and
storage capabilities closer to the data source, significantly reducing communication latency and alleviating
the load on core networks. In this architecture, edge caching plays a key role. By pre-storing popular content
near users, effectively improves service response time and enhances user experience. However, edge nodes
have limited resources and restricted caching space. How to allocate cache resources efficiently under
resource constraints to meet diverse and dynamic user demands has become a critical issue in edge
computing systems[2].

The problem of edge cache resource allocation is inherently competitive and non-cooperative in nature. It
involves multiple users or service requests competing for limited caching resources. This problem depends



not only on static information such as user preferences and content popularity, but also on dynamic factors
including network topology, service latency, and bandwidth conditions[3]. Traditional static optimization
methods often assume a stable or predictable environment, which makes them unsuitable for real-world
scenarios where network conditions change frequently and participant strategies vary. In addition, cache
conflicts among different services, uneven load distribution across edge nodes, and the spatiotemporal
evolution of content popularity further increase the complexity of resource allocation. Therefore, relying
solely on heuristic or centralized control strategies is insufficient to address the challenges of edge cache
management in large-scale distributed environments[4].

In recent years, game theory has shown strong potential in modeling the interactions among multiple agents
in distributed systems. It provides a theoretical foundation for analyzing strategic behaviors among users
competing for cache resources. Game models help reveal equilibrium states under different strategy
combinations, enabling the design of fair and efficient allocation mechanisms[5]. However, traditional game-
theoretic approaches assume complete information and rational behavior, which are difficult to guarantee in
edge computing environments. These environments often involve incomplete information and irrational
decisions. Moreover, in highly dynamic settings, metrics such as cache hit rate and quality of service change
with user behavior and network conditions. This leads to a massive and evolving strategy space that
traditional game models cannot handle in real time[6].

To overcome these challenges, intelligent decision-making mechanisms have become a key research focus.
Multi-agent reinforcement learning, which integrates game modeling and machine learning, has gained wide
attention for solving complex decision-making problems. In edge computing scenarios, each edge node or
user can be regarded as a learning agent. Through interaction with the environment, each agent continuously
adjusts its strategy to maximize long-term rewards. This approach does not require prior knowledge of the
global system. It learns adaptive allocation strategies through trial and error, making it especially suitable for
distributed systems with high-dimensional state spaces, nonlinear feedback, and dynamic changes|[7].
Combined with game-theoretic modeling, multi-agent reinforcement learning can address non-cooperative
decision-making in competitive environments. It can also enhance system-wide efficiency and fairness
through coordinated strategies. This makes the approach highly flexible and robust.

In conclusion, under the constraints of limited edge resources and distributed structures, adopting multi-agent
reinforcement learning to drive game-based edge cache allocation has significant research value and practical
relevance. This approach integrates strategic interactions among agents with feedback from the environment.
It enhances the intelligence and automation of edge cache management under complex network conditions.
Furthermore, it promotes the development of edge computing platforms toward higher efficiency,
adaptability, and intelligence, laying a solid foundation for ubiquitous computing and real-time data services
in the future.

2. Related work

2.1 Multi-agent reinforcement learning

As a natural extension of reinforcement learning, multi-agent reinforcement learning (MARL) has shown
broad adaptability and potential in solving distributed decision-making problems in recent years. Under this
paradigm, multiple agents learn strategies independently or collaboratively in a shared environment. They
obtain feedback through continuous interaction and adjust their behavior to maximize long-term rewards for
themselves or the entire system[8,9]. Compared with the single-agent setting, the key challenge in multi-
agent systems lies in the non-stationarity of the environment. Each agent's behavior not only affects its
feedback but also dynamically alters the learning environment of others. This significantly increases the
complexity of the system's strategy space. To address this dynamic coupling, various methods have been
proposed, including centralized training with decentralized execution, policy-sharing mechanisms, and joint



action modeling. These approaches aim to reduce instability caused by policy updates among agents while
preserving the distributed nature of the system[10].

In edge computing and network resource management scenarios, MARL is particularly suitable for modeling
the behavioral evolution of multiple service nodes or users under shared resources. Edge nodes are typically
widely distributed, resource-heterogeneous, and dynamically changing in operational state. Traditional
centralized control methods often struggle to respond in real-time or face communication bottlenecks[11]. In
contrast, multi-agent approaches allow each node or service to learn autonomously based on local
information. This provides good scalability and robustness. Especially in problems like resource competition,
cache allocation, and task offloading, there are naturally cooperative and conflicting relationships among
entities. MARL is well suited to handle such complex game structures. With this method, efficient local
optimal strategies can be achieved without relying on global information. Additionally, coordinated strategies
can improve overall system performance while balancing efficiency and fairness[12].

It is worth noting that the performance of MARL in-game environments is closely related to algorithm design.
Strategic interactions among agents may lead the system to fall into suboptimal equilibria or even cause
strategy oscillations and convergence failures. Designing learning mechanisms that promote stable game
convergence has become a key research focus. Recent studies have introduced attention mechanisms, value
function decomposition, and policy projection techniques to improve model stability and convergence
efficiency. At the same time, more efficient information-sharing frameworks are being developed under
partially observable conditions to reduce learning bias caused by information asymmetry. These advances
provide a solid theoretical and algorithmic foundation for the deeper application of MARL in edge caching,
task scheduling, and intelligent communication. They also offer strong support for addressing game-driven
resource allocation problems in this study[13].

2.2 Research on intelligent game

As the complexity of computing systems continues to grow, traditional game theory approaches that rely on
precise modeling and rational behavior assumptions face increasing challenges in real-world applications[14].
To address the uncertainty of environments, bounded rationality of participants, and locality of information in
multi-agent systems, the concept of intelligent game theory has emerged. Intelligent games integrate machine
learning and reinforcement learning mechanisms[15]. This allows game agents to learn optimal strategies
through continuous interaction, even in unknown or partially known environments, and to model and adapt to
the behavior of others[16]. Compared with traditional static or complete-information dynamic games,
intelligent games emphasize strategy evolution and learning ability. They better capture the complexity of
strategic interdependence and information coupling in real systems. As a result, they are widely applied in
fields such as network resource allocation, communication cooperation, and coordination of unmanned
systems[17].

In edge computing and cache resource management scenarios, resource scarcity and diverse user demands
lead to competitive game relationships in the system. Multiple edge nodes or service providers compete for
limited cache space. Their strategic choices directly affect system performance and service quality.
Traditional game methods are often based on static analysis or centralized control[18]. These approaches lack
adaptability and real-time responsiveness, making them unsuitable for dynamic system requirements.
Intelligent game methods, in contrast, leverage the learning ability of agents. They enable each participant to
dynamically perceive environmental changes and adjust strategies based on local or historical
information[19]. This supports strategy optimization and system coordination in complex interactions.
Especially in non-cooperative environments, where services or users may have conflicting goals, intelligent
games guide the system toward stable and efficient equilibrium through strategy evolution without requiring
forced intervention. This gives the approach high practical value.

In recent years, intelligent game research has increasingly integrated advanced techniques such as
reinforcement learning, multi-agent modeling, and graph-based optimization. These developments have led to



significant improvements in modeling capability and computational efficiency. For example, reinforcement
learning frameworks allow participants to explore unknown strategy spaces autonomously. Partially
observable game models support reasonable decision-making under incomplete information[20]. Graph-
based game methods leverage the topological relationships among nodes to introduce structure-aware
strategies, enhancing game efficiency. These advances provide theoretical and technical foundations for
building resource allocation mechanisms with learning ability, adaptability, and autonomy. In edge cache
management, incorporating intelligent game concepts helps capture subtle strategy interactions among agents.
It also offers effective paths for distributed, dynamic, and game-driven optimization in large-scale systems.
This is of great significance for improving the overall intelligence of edge computing systems.

3. Method

This study proposes a game-driven edge cache resource allocation mechanism based on Multi-Agent
Reinforcement Learning (MARL). It aims to address the challenge of dynamic coordination among multiple
agents caused by competition for cache resources in edge computing environments. Compared with existing
approaches, this method presents two key innovations. First, a learning framework is designed that
integrates strategy evolution with resource games. Cache resource allocation is modeled as a repeated game
among multiple agents. A local incentive mechanism is introduced to enable adaptive policy optimization.
This enhances the system's distributed coordination capability. The framework is referred to as Game-aware
Adaptive Policy Optimization (GAPO). Second, an agent architecture is developed that combines state
awareness with neighborhood interaction. Each agent can capture strategy dependencies among agents using
only local observations. This improves the model's stability and generalization in complex environments.
The architecture is called a State-Aware Decentralized Agent Network (SADAN). These two innovations
work together to advance edge cache allocation from rule-driven to learning-driven mechanisms. They lay a
methodological foundation for building efficient, intelligent, and autonomous edge systems. The
architecture of the overall model is illustrated in Figure 1.
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Figure 1. Overall model architecture diagram



3.1 Game-aware Adaptive Policy Optimization

To address the problem of cache resource competition among multiple agents in edge computing
environments, this paper presents a game-aware multi-agent reinforcement learning approach called Game-
aware Adaptive Policy Optimization (GAPO). This method is designed to capture the dynamic and
competitive nature of distributed edge systems, where multiple autonomous agents—each representing an
edge node or a service requester — must make independent yet interrelated decisions about resource
allocation. The entire system is modeled as a multi-agent game environment in which each agent interacts
with others through repeated strategic decisions. Within this framework, agents continuously adjust and
evolve their policies in response to changing network conditions, user demands, and the behavior of
neighboring agents. The objective of each agent is to maximize its long-term cache-related benefits while
adapting to competition and resource constraints in a decentralized setting. GAPO integrates reinforcement
learning with game-theoretic principles by introducing adaptive mechanisms that align individual agent
incentives with system-level performance. This strategic learning process encourages more efficient and

coordinated resource usage over time. The detailed architecture of the GAPO module is illustrated in Figure
2.
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Figure 2. GAPO module architecture

The interaction between the agent and the environment is formalized as a partially observable Markov game
(POMG), defined as a six-tuple:
G=<S8,4,P,R,0,y >

Among them, S represents the global state space, 4={4,,...,4,} is the action space of each agent, P is the
state transition probability function, R={R,,..,R} 1is the local reward function of each agent,
0={0,,...,0,} is the observation function, and y €(0,1) is the discount factor.

In order to model the strategic interaction between agents, we introduce a graph-structured state perception
mechanism that enables each agent to capture the behavior changes of other agents through neighborhood



interactions. Let w, represent the local observation input of agent i and N, represent the set of its

neighboring agents, then its state is expressed as:
h, = Encoder(w,,{w,} .y )

After obtaining the state representation, the agent uses the policy network 1, (a,|h;) to decide action a, .

The policy is optimized by maximizing the following expected return objective:
‘](81) = ET~IZ9 [Z thit]
=0

Where 7 represents the state-action sequence sampled from the policy trajectory. To ensure the stability of
the policy update, the policy gradient is approximated as:

Vo (6)= ELV, log g (a, | h)- 4]
Where ;ll. is the advantage function estimate, which measures the performance of the current action

relative to the average behavior.
Furthermore, considering the heterogeneity and local incentive differences of different agents in the game
process, GAPO introduces an adaptive incentive function ¢, to adjust the individual's strategic tendency

and the direction of game equilibrium. This incentive function is combined with the original reward to form
a new optimization goal:

R =R +A (pi(hﬂ{hj}jeNi)
A is a regulatory factor used to balance the impact between environmental feedback and strategic games.
This mechanism enables the agent to dynamically adjust its behavior strategy in both adversarial and
collaborative game environments, thus improving the overall efficiency and stability of the system.
In summary, GAPO introduces graph structure neighborhood awareness at the state modeling level and
integrates local game incentives at the policy optimization level, thus achieving policy autonomy and game
awareness in resource allocation. This method has good scalability and generalization capabilities and is
suitable for cache allocation scenarios with high requirements for policy dependence and resource
heterogeneity in complex multi-agent environments. Through structured state encoding and policy
decoupling optimization mechanisms, GAPO provides an intelligent solution with game awareness for edge
cache resource management.

3.2 State-Aware Decentralized Agent Network

In a multi-agent edge computing system, environmental information is typically local, dynamic, and only
partially observable due to the distributed nature of edge nodes and the inherent constraints in
communication and sensing. To address these challenges and enhance the decision-making capabilities of
individual agents, this paper introduces a state-aware decentralized agent network (SADAN). SADAN is
specifically designed to improve the responsiveness of each agent to ongoing changes in its immediate
surroundings as well as the evolving strategies of neighboring agents. The architecture allows each agent to
operate autonomously, using its own locally observed data in combination with encoded state information
from nearby agents. This enables agents to form a more comprehensive and context-sensitive understanding
of their operational environment without requiring centralized coordination. By integrating neighborhood
information into the local decision process, SADAN establishes a weakly coupled decentralized decision-
making structure that balances autonomy and coordination. This design enhances the overall flexibility and
scalability of the system, making it better suited for dynamic and resource-constrained edge computing
environments. The detailed module architecture of SADAN is illustrated in Figure 3.
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Figure 3. SADAN module architecture
Assume that the local observation of agent i at time step t is w; , and its state representation is obtained
through the state encoder:
hi: ]:nc (Wzt’ {Wj‘}jeN, )
Where N, represents the set of neighbors that interact with agent 1, and the encoding function f

enc

() can
be implemented based on the attention mechanism, graph neural network, or other structures.

After state encoding, the agent makes decisions based on the policy network 7z, , and its action sampling
process is defined as:

aZN Ty, (a; | hit)

Each agent takes actions based on the local state, and the execution results affect the overall environment
state and feedback on the local reward R/ . Since each agent strategy is learned independently, the overall
strategy combination of the system is presented as a joint strategy space |_| m,x...xr, . Under this

architecture, all agents optimize their strategy objective functions in parallel:
J(6)=E,[Y v'R]
t=0

Where y is the discount factor, which is used to balance long-term and immediate returns.

In order to achieve the effectiveness of neighborhood interaction, SADAN introduces an adjacency-sensitive
incentive propagation mechanism. By constructing an information interaction graph G =(V,e) between

agents, each agent not only obtains local incentives but also combines the strategy evolution information of
neighbor states to improve strategy coordination. This mechanism adjusts local incentive terms through
structure-aware functions:



Eit = Rit +A Z ¢(hitﬁh;)

JeN;
Where A is the adjustment factor, and function ¢(-,-) measures the similarity or coordination between

neighborhood states, thereby encouraging local consistency of strategies.

In addition, in order to improve the stability of policy learning, the agent policy update uses the advantage
function estimation method to perform policy gradient optimization. The update rule is as follows:

V,J(6)=E[V, logr, (a | h)- 4]

Where 127.’ is the estimated value of the advantage function, which is usually approximated by the temporal

difference (TD) method or the generalized advantage estimation (GAE). By tightly coupling the
neighborhood interaction information with the strategy update process, the SADAN architecture not only
realizes the autonomous learning and local optimization of the agent but also realizes the co-evolution of
multi-agent strategies without the need for global information, providing structural support for game-driven
edge cache resource management.

4. Experimental Results
4.1 Dataset

This study uses the EdgeDroid dataset as the foundation for experiments and validation. EdgeDroid is an
open-source dataset specifically designed for edge computing and intelligent device behavior modeling. It
contains real interaction data from a large number of mobile devices under various network environments
and edge nodes. The dataset is highly representative and features rich data dimensions. It includes key
indicators such as task offloading records, service request traces, latency feedback, bandwidth status, and
cache hit rates. These features support the modeling needs of cache resource allocation and scheduling
strategies in edge systems.

EdgeDroid collects data across several typical edge scenarios, including campus networks, urban hotspots,
and home networks. In each scenario, end devices interact with nearby edge nodes, forming different
computation request patterns and content access distributions. These data provide a realistic observation
basis for simulating multi-agent game behaviors. They also offer high temporal resolution and spatial
distribution, making them suitable for building state-action-reward structures used in reinforcement learning
and game learning frameworks.

In addition, the EdgeDroid dataset includes configuration details of edge nodes, such as computational
capacity, cache size, and task response time distributions. These parameters offer environmental constraints
for resource allocation mechanisms. With appropriate preprocessing and feature extraction, the dataset can
be effectively used to train state-aware multi-agent models. It also helps evaluate the generalization and
stability of strategies in real-world scenarios. Its multidimensional and realistic characteristics make it an
ideal choice for validating learning-based resource scheduling mechanisms in edge computing environments.

4.2 Experimental setup

To validate the effectiveness of the proposed method in practical scenarios, this study constructs an edge
computing environment based on a simulation platform, using the real-world EdgeDroid dataset for
modeling and training. The experimental platform consists of multiple simulated edge nodes and mobile
users. The nodes have heterogeneous cache capacities and service processing capabilities. All agents
perform parallel policy optimization under a unified training framework. Task requests, bandwidth states,
and content access distributions in the environment are drawn from observational records in the dataset. The
policy network adopts a shared structure and learns optimal resource allocation strategies in a discrete action



space. A consistent discount factor and learning rate are used throughout training to ensure repeatability and
fairness in the evaluation process.

During simulation, a unified hardware and software configuration is adopted. Several key parameters are set
to control model complexity and learning efficiency. Table 1 presents the configuration details of the main
experimental parameters, including the number of agents, number of edge nodes, cache capacity,
observation dimensions, and policy update frequency. These parameters are determined based on the
characteristics of the dataset and the task requirements. This ensures the realism of the experimental
scenario and the controllability of algorithm execution. The detailed settings are shown in Table 1.

Table 1: Experimental Configuration Parameters

Parameter Value

Number of Agents 10

Number of Edge Nodes 5

Cache Capacity per Node 100 units
Observation Dimension 64

Action Space 10 discrete actions
Discount Factor ( vy ) 0.95

Learning Rate 0.0001

Policy Update Frequency Every 5 steps
Training Episodes 5000

4.3 Experimental Results

1) Comparative experimental results
This paper first gives the comparative experimental results, as shown in Table 2.

Table2: Comparative Results

Method Cache Hit Rate (%) Avg. Latency (ms) Convergence Steps
Ours 91.2 42.7 3400
MAAC[20] 85.6 57.3 4900
QMIX[21] 83.1 60.5 5200
MAPPO[22] 88.0 51.2 4100

The comparative experimental results shown in Table 2 indicate that the proposed GAPO method
outperforms existing multi-agent reinforcement learning models across several key performance metrics. In
particular, GAPO achieves a cache hit rate of 91.2 percent, which is significantly higher than MAAC (85.6
percent), QMIX (83.1 percent), and MAPPO (88.0 percent). This demonstrates that the game-aware policy
optimization mechanism is more effective in matching content demand between edge nodes and users. It
leads to improved resource utilization efficiency. The result confirms that in dynamic game environments,



combining local incentive adjustments with state-aware mechanisms offers clear advantages in cache
resource allocation.

In terms of average task delay, GAPO records the lowest delay at only 42.7 milliseconds, reducing latency by
at least 8.5 milliseconds compared to other models. This indicates that the proposed State-Aware
Decentralized Agent Network can more effectively detect changes in neighborhood states. Allocating cache
resources appropriately reduces task request transmission and waiting time. In real-world edge computing
environments, low latency is critical. It meets the need for real-time responses from intelligent devices,
especially in time-sensitive scenarios such as edge video services and intelligent transportation systems.

Regarding policy convergence efficiency, GAPO also shows faster training convergence. It stabilizes in only
3400 steps, compared to 5200 steps for QMIX and 4900 steps for MAAC. This improvement is due to the
game-driven incentive adjustment mechanism introduced during policy optimization. It allows agents to
consider not only environmental rewards but also the coordination of neighborhood behaviors. This reduces
policy oscillation and enhances learning stability and efficiency.

In summary, the comparative experiments validate the proposed method's capability in resource allocation
and policy adaptation under game-based environments. By introducing state-aware architectures and game-
theoretic incentive modulation, GAPO outperforms mainstream multi-agent algorithms in several core
metrics. These results demonstrate effective modeling and problem-solving from both system and algorithmic
perspectives in edge cache management. They also lay the groundwork for deploying this method in real-
world multi-tenant edge systems.

2) Ablation Experiment Results

This paper also further gives the results of the ablation experiment, and the experimental results are shown in
Table 3.

Table 3: Ablation Experiment Results

Method Cache Hit Rate (%) Avg. Latency (ms) Convergence Steps
Baseline 84.3 61.5 5400
+GAPO 88.1 49.6 4300
+SADAN 86.9 52.8 4700
Ours 91.2 42.7 3400

The ablation study results shown in Table 3 indicate that the two core components proposed in this study,
GAPO and SADAN, both contribute significantly to the overall performance of the model. Compared with
the baseline model, introducing only GAPO increases the cache hit rate from 84.3 percent to 88.1 percent.
This shows that the game-aware policy optimization mechanism effectively guides agents to make cache
decisions that better match content requests. The improvement is due to GAPO's dynamic adjustment of local
incentives during multi-agent interactions, enabling more reasonable resource configuration in competitive
environments and reducing content redundancy and resource conflicts.

The introduction of SADAN also brings a notable performance boost. The cache hit rate increases to 86.9
percent, and the average delay decreases from 61.5 milliseconds to 52.8 milliseconds. SADAN incorporates
neighborhood state encoding into the agents' observation process. This allows agents to perceive not only
their state but also infer the strategic tendencies of nearby nodes. As a result, the coordination among local
strategies is enhanced. This state-aware mechanism addresses the policy fragmentation problem often seen in
traditional decentralized methods and improves the regional rationality of resource allocation.




In terms of convergence efficiency, both GAPO and SADAN accelerate the training process. With GAPO,
the number of convergence steps decreases from 5400 to 4300. With SADAN, convergence stabilizes at 4700
steps. This suggests that the two mechanisms improve learning effectiveness from different angles: GAPO
through optimization target design and SADAN through state modeling. When combined, convergence
further improves to 3400 steps. This shows that the two components complement each other and jointly
accelerate policy stabilization during game-based learning. Overall, the complete method proposed in this
paper outperforms any individual component across all three key metrics. This demonstrates the synergistic
effect of the combined design of GAPO and SADAN in edge cache resource management. GAPO enhances
policy adaptability through game-awareness, while SADAN improves environmental modeling through
structure-aware mechanisms. Together, they significantly improve the intelligence of resource scheduling in
multi-agent systems under dynamic and distributed conditions.

3) Comparative experiment on strategy convergence under different numbers of agents

This paper also gives the experimental results of strategy convergence comparison under different numbers
of intelligent agents, as shown in Figure 4.
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Figure 4. Comparative experiment on strategy convergence under different numbers of agents

As shown in Figure 4, the proposed method demonstrates consistent patterns in policy convergence
efficiency and cache hit rate under different numbers of agents. When the number of agents increases from 5
to 10, the number of convergence steps decreases significantly. This indicates that moderately increasing the
agent population enhances information exchange and learning efficiency across the system, which accelerates
overall convergence. This result highlights the effectiveness of the proposed decentralized state-aware
mechanism in multi-agent interactions. It also confirms the scalability of combining local observation with
game-driven optimization.

As the number of agents continues to grow to 15 and 20, the convergence steps slightly increase. This
suggests that in high-density agent environments, convergence may be affected by additional factors such as
increased neighborhood state fluctuations and more complex game spaces. This observation supports the
existence of a nonlinear relationship between agent population and learning dynamics in-game environments.
It also emphasizes the importance of designing more efficient interaction mechanisms and incentive
structures for large-scale systems.

In terms of cache hit rate, the model maintains a high overall performance, consistently exceeding 87 percent.
This shows that the proposed strategy can stably identify and adapt to task content distributions even as the
number of agents changes. When there are 10 agents, the cache hit rate reaches its highest value of 91.2
percent. This aligns with the best convergence efficiency, further confirming that the game-aware and state-



fusion mechanism achieves optimal synergy at moderate scales. Overall, the experimental results demonstrate
the stability and adaptability of the proposed method during the scaling process of multi-agent systems. By
building a framework that couples state awareness with strategic learning, the model achieves strong learning
efficiency and maintains effective resource management across different levels of complexity in edge
computing environments. This validates the robustness and practicality of the design in game-based scenarios.

4) Sensitivity analysis of multi-tenant competition intensity on game learning mechanism

This paper also gives a sensitivity analysis of the multi-tenant competition intensity to the game learning
mechanism, and the experimental results are shown in Figure 5.
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Figure 5. Sensitivity analysis of multi-tenant competition intensity on game learning mechanism

As shown in the experimental results of Figure 5, the cache hit rate decreases steadily as multi-tenant
competition intensity increases. This trend indicates that when multiple tenants compete for limited edge
cache resources, the overall caching performance of the system is significantly impacted. In particular, when
the competition intensity exceeds 0.6, the decline in the hit rate becomes more rapid. This suggests that
resource conflicts become more frequent, and agents face increasingly complex decisions in resource
allocation. It highlights the challenges that high-competition game environments pose to learning
mechanisms.

On the other hand, policy stability shows a clear upward trend with increasing competition intensity, as
reflected in the continuous rise of the policy fluctuation coefficient. This result reveals that in highly
competitive environments, strategy evolution among agents becomes more intense, leading to more frequent
variations in decision-making. It suggests that learning mechanisms based solely on local feedback may
struggle to converge to stable strategies under strong game dynamics. This emphasizes the importance of
designing mechanisms to ensure stability in game-based learning.

Despite the observed fluctuations, the proposed mechanism maintains a relatively high cache hit rate and
moderate policy stability under medium competition levels, such as between 0.4 and 0.6. This demonstrates a
certain degree of robustness. The result confirms that the game-aware incentive mechanism introduced in this
study can, within a reasonable range, alleviate resource conflicts and suppress strategy oscillations. This helps
maintain baseline performance in multi-tenant environments. Overall, this experiment reveals the influence of
multi-tenant competition on game-based learning mechanisms from two key dimensions. It provides
empirical evidence for further optimizing state encoding structures, incentive function design, and policy
coordination mechanisms. The findings also confirm that the proposed model retains a level of adaptability
under resource-constrained conditions, offering strong support for practical deployment in multi-tenant edge
computing environments.



5) The impact of state observation completeness on multi-agent learning performance

This paper also investigates the influence of state observation integrity on the performance of multi-agent
learning within the proposed framework. In complex and dynamic edge computing environments, agents
often operate under partial observability due to limitations in sensing capabilities, communication
constraints, or privacy restrictions. As a result, the availability and completeness of state information can
vary significantly across different agents and time steps. Understanding how these variations in observation
quality affect the learning dynamics, coordination efficiency, and policy adaptation is essential for designing
robust and scalable multi-agent systems. To explore this aspect, the study incorporates a series of controlled
experiments that systematically adjust the level of state observation integrity and monitor its effects on the
learning process. Figure 6 presents the corresponding results, which provide insight into the relationship
between information completeness and agent behavior under game-driven resource allocation scenarios.
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Figure 6. The impact of state observation completeness on multi-agent learning performance

Figure 6 shows the average policy return of the proposed method under different levels of state observation
completeness. The figure indicates that as observation completeness decreases, the learning performance of
agents declines. The average policy return drops from 0.91 under full observation to 0.52 under partial
observation. This demonstrates that missing state information significantly weakens the agents' ability to
perceive the environment, which in turn reduces the accuracy of policy decisions and resource allocation.

When observation completeness remains above 80 percent, the model performance remains relatively stable.
The policy return stays at a high level. This indicates that the proposed state encoding and policy
optimization mechanisms have a certain degree of robustness and can adapt to environments with minor
information loss. However, when the observation level drops below 60 percent, the return decreases sharply.
This suggests that missing information begins to disrupt neighborhood interactions and policy coordination.
The policy network becomes less effective at capturing environmental dynamics, which undermines the
overall performance of game-based optimization.

These results highlight the importance of introducing state-aware structures such as SADAN. Under
incomplete observation, agents cannot accurately model the behavior of their neighbors. This increases the
risk of local policy conflicts and resource waste. Enhancing state encoding and neighborhood information
aggregation helps reduce decision errors caused by missing observations. It also improves system stability
during the learning process in-game environments.

In conclusion, observation completeness has a critical impact on learning performance in multi-agent systems.
In edge caching scenarios, incomplete state information directly leads to lower resource allocation efficiency.



The experiment further emphasizes the need to build structured state representations and robust decision-
making mechanisms in multi-agent game settings. This provides a foundation for ensuring model stability in
future real-world deployments.

5. Conclusion

This paper addresses the issue of resource competition in edge computing environments and proposes a
game-driven cache resource allocation mechanism based on multi-agent reinforcement learning. The goal is
to enhance intelligent decision-making under complex interaction scenarios. The mechanism integrates game
modeling with reinforcement learning-based policy optimization. By introducing Game-aware Adaptive
Policy Optimization (GAPO) and the State-aware Decentralized Agent Network (SADAN), agents are able to
adaptively learn resource scheduling strategies in partially observable and multi-tenant competitive
environments. This work provides a systematic exploration of the integration between multi-agent learning
and edge resource management. It contributes to the research landscape of intelligent decision-making at the
edge. Experimental results validate the effectiveness and robustness of the proposed method from multiple
perspectives. The method outperforms existing mainstream models in cache hit rate, average response delay,
and policy convergence speed. It also maintains strong stability under different conditions such as ablation
settings, system scaling, and observation completeness perturbations. These results not only confirm the
method's practical applicability but also highlight the impact of state modeling quality, game mechanism
design, and local incentive structures on multi-agent learning performance. By leveraging the structural
features of the environment and dynamic game interactions among agents, this study presents a learning
framework that is both interpretable and adaptive for edge cache resource allocation. The proposed method is
generalizable and extensible. It can be applied to various edge intelligence scenarios, including content
delivery networks, intelligent transportation systems, industrial Internet of Things, and mobile cloud services.
These applications often involve high task volumes, limited resources, and significant environmental
uncertainty. They require efficient multi-agent collaborative learning mechanisms for resource scheduling
and policy optimization. The method presented in this paper not only provides technical support for specific
edge caching problems but also offers a modeling paradigm and algorithmic framework for broader
distributed intelligent decision systems.

6. Future work

Future work may explore more generalizable agent architectures to improve policy transfer across different
task distributions and network topologies. The integration of privacy-preserving mechanisms, asynchronous
collaboration models, or federated game learning techniques could further enhance deployability and fairness
in real-world multi-tenant environments. As computing continues to move closer to the edge and intelligent
infrastructure matures, the findings of this study are expected to be applicable in large-scale edge systems.
This will support the deployment and evolution of intelligent resource management technologies on emerging
computing platforms.
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