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Abstract: This paper addresses core challenges in Chain-of-Thought reasoning with large language
models, including path instability, structural redundancy, and lack of strategy control. It proposes a
reasoning optimization framework that integrates multi-path evaluation and policy-based scheduling. The
framework consists of two main components: the Multi-Path Adaptive Evaluation (MPAE) module and the
Policy-Aware Reasoning Scheduler (PARS). These components systematically improve Chain-of-Thought
performance from two perspectives: structural quality modeling and behavioral decision control. MPAE
encodes multiple reasoning paths into vector representations and assigns semantic scores. It constructs a
learnable path quality function and uses the scores to guide path aggregation and answer generation. PARS
introduces reinforcement learning to build a path selection policy network. It dynamically adjusts scheduling
behavior based on reward signals. This improves the stability and consistency of reasoning outputs.
Experiments are conducted on the GSM8K benchmark for mathematical reasoning. The evaluation includes
multiple metrics such as accuracy, consistency, and robustness. Compared to existing Chain-of-Thought
methods, the proposed framework shows clear advantages in structural selection and strategy adaptability.
Ablation studies reveal the individual contributions of MPAE and PARS to overall performance. Additional
experiments on path distribution and robustness confirm that the framework maintains stable reasoning
under high uncertainty. The overall approach features a clear structure, controllable strategy, and adaptive
path selection. It effectively enhances Chain-of-Thought reasoning and output quality in complex tasks.
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1. Introduction
Chain-of-thought (CoT) reasoning has emerged as a powerful paradigm to enhance the inference ability of
large language models. It has shown great potential in complex tasks, mathematical reasoning, and logical
question answering[1,2]. The core idea is to guide the model to generate a series of intermediate reasoning
steps before producing a final answer. This mimics how humans solve problems by "writing drafts." It helps
reduce the risk of incorrect direct answers. CoT is especially useful for tasks that require multi-step logic,
causal analysis, or semantic disambiguation. However, despite its advantages, CoT still suffers from
uncertainty in output, strong path dependence, and high sensitivity to prompt design. These limitations affect
its stability and reliability in real-world applications[3].
In current practice, the quality of CoT outputs heavily depends on prompt design and randomness in
generation. As a result, the same question may yield different reasoning paths and answers in different runs.
A widely used solution is Self-Consistency. It generates multiple independent reasoning paths for the same



problem and then aggregates or votes on the results to select the most reasonable answer. This approach
improves stability to some extent. However, it does not solve two fundamental issues. First, semantic
redundancy and logical conflicts among different paths are not well modeled. Second, the selection and
scoring of paths rely on static rules rather than dynamic learning, which limits adaptability to task complexity
and model behavior[4].
More broadly, CoT reasoning can be seen as a "generate-evaluate-select" process. Each reasoning path
represents an "action" by the model. The final answer reflects its "strategy preference." This perspective
suggests the applicability of reinforcement learning (RL)[5]. By building an RL framework, the model can
receive feedback signals through repeated trials. It can then learn which reasoning paths are more effective
and which intermediate steps are more valuable. RL can optimize not only answer accuracy but also semantic
coherence and logical consistency. This leads to better reasoning quality and interpretability[6].
The integration of RL with language model reasoning has become a key trend in natural language processing.
It has shown promise in dialogue systems, code generation, and decision-making tasks. Introducing RL into
CoT can fundamentally change the reliance on static prompt templates. It enables the model to adaptively
adjust reasoning structures and develop more generalizable and controllable reasoning behaviors. RL also
supports task transfer. It allows the reuse of reasoning strategies across different task types. This extends
CoT's applicability to complex cross-domain problems. Compared to prompt engineering or manual path
design, RL offers a theoretical and practical solution for automatic optimization[7].
As intelligent systems based on large language models evolve rapidly, achieving trustworthy, stable, and
interpretable reasoning has become a major challenge. A CoT framework optimized by self-consistency and
reinforcement learning can overcome the uncertainty of single-path reasoning. It introduces dynamic learning
mechanisms to improve overall reasoning strategies. This approach is not just a technical enhancement. It
represents a systematic upgrade in modeling the cognitive capabilities of language models. It holds strong
theoretical value and broad application potential.

2. Related work
2.1 Large Language Model

Large language models have become a core technology in natural language processing in recent years. Their
performance gains result from the combination of massive parameter scales and high-quality training
corpora[8]. Through autoregressive language modeling, these models acquire not only basic semantic
understanding and text generation abilities but also capabilities in cross-task transfer, few-shot learning, and
contextual awareness[9,10]. This shift from statistical language models to general-purpose intelligence
engines enables strong performance across tasks such as question-answering, dialogue, summarization,
translation, and code generation. In open-domain settings, their ability to handle complex tasks without task-
specific fine-tuning highlights their strong generalization potential.

However, despite their natural language generation capacity, large language models still face clear
limitations in logical reasoning, mathematical calculation, and multi-step planning. These weaknesses stem
from the fact that reasoning skills are not explicitly optimized during training. Instead, the models learn
patterns in language through data-driven objectives[11,12]. As a result, when faced with tasks that require
intermediate reasoning steps, models often default to direct answer generation. This leads to irrelevant
answers, logical gaps, or computational errors. To address this, researchers are exploring ways to guide
models to produce reasoning chains. This approach aims to make the reasoning process more transparent
and stable by showing the path to the answer rather than just the final output[13].

In this context, the generation process of language models is reinterpreted as a sequence of reasoning actions.
At each step, the model selects a token based on choices in a latent semantic space. For complex tasks, this
often leads to multiple valid reasoning paths. This multiplicity is a strength that enables output diversity.



However, it also introduces variability and uncertainty in the quality of responses. Therefore, it is important
to guide the model toward coherent and consistent reasoning paths while preserving output diversity. The
Chain-of-Thought paradigm was developed to address this need. It has been effectively applied in the
context of large model architectures[14].
As large language models continue to evolve, their reasoning behaviors are shifting from data imitation to
explanation generation[15]. This trend requires researchers to redesign generation strategies, prompt
structures, and learning objectives. Models must not only produce correct answers but also provide clear,
coherent, and reasonable reasoning processes. A key challenge is how to balance controllability and
flexibility in reasoning paths. Another is how to maintain fluency while ensuring logical structure.
Addressing these challenges is essential for advancing model capabilities. It also reveals the reasoning
potential of language models beyond language understanding. This work provides a theoretical and practical
foundation for applications in high-stakes domains such as education, law, and healthcare.

2.2 Chain-of-Thought

Chain-of-thought reasoning is a paradigm designed to enhance large language models by guiding them to
generate intermediate reasoning steps. Unlike traditional one-step generation strategies, it encourages models
to produce a sequence of coherent reasoning steps. This makes their logical deduction, problem
decomposition, and knowledge retrieval more aligned with human cognitive patterns. It improves accuracy in
tasks such as mathematical problem-solving, logical question answering, and commonsense reasoning. It also
provides stronger interpretability. In multi-step reasoning tasks, Chain-of-Thought helps reduce the risk of
models producing seemingly correct but flawed answers. It supports the construction of clear problem-
solving structures for complex tasks[16].
The effectiveness of Chain-of-Thought heavily depends on the design and structure of prompts. Traditional
few-shot prompting can trigger reasoning, but it is highly sensitive to the choice of examples and has limited
generalization. To address this, later studies proposed methods such as automatic prompt generation, adaptive
path construction, and self-questioning. These methods activate the model's internal reasoning trace and help
generate task-relevant reasoning processes. They enrich the implementation of Chain-of-Thought from
different perspectives and show its potential as a general-purpose reasoning mechanism in multi-task learning.
At the same time, Chain-of-Thought has become a key metric for evaluating reasoning ability[17]. The
plausibility, coherence, and stability of the generated paths are now important indicators of model quality.
Despite notable progress, Chain-of-Thought still faces key challenges. First, the reasoning paths generated by
the model are often unstable[18]. The same input may produce semantically different steps under different
random seeds. This variability affects the reliability of final answers. Second, there is often no internal quality
control for the reasoning paths. The generation process can include logical gaps, redundant information, or
contradictions. In addition, most current implementations rely on static prompts. They lack dynamic
optimization and cannot easily adapt to diverse tasks or changing inputs. Improving the robustness and
generalization of the chain of thought remains an important research focus[19].
To address these challenges, one new approach treats Chain-of-Thought as a sequential decision-making task.
Reinforcement learning is introduced to help the model learn how to select optimal reasoning paths after
generating multiple candidates. This approach maintains the interpretability and diversity of Chain-of-
Thought[20]. It also strengthens the model's ability to make strategic decisions in complex reasoning tasks.
By combining this with self-consistency, the model can generate multiple paths, perform cross-path voting,
and update its path preferences through reinforcement learning. This allows for a better balance between
output quality and reasoning stability. Such a direction brings dynamic learning into the chain of thought and
lays the foundation for building more advanced language intelligence systems.



3. Method
This study presents an enhanced Chain-of-Thought reasoning framework that integrates self-consistency
principles with reinforcement learning-based strategies. The primary objective is to improve both the
stability of reasoning paths and the overall generation quality in complex tasks involving large language
models. Traditional Chain-of-Thought approaches often rely on fixed prompts and lack the flexibility to
adapt to diverse input scenarios or task-specific reasoning demands. To address these limitations, the
proposed framework introduces two complementary modules that enable dynamic reasoning control and
intelligent path selection. This design shifts the reasoning process from static generation to a more
interactive and strategically guided paradigm, which is essential for tasks that require multi-step logic and
semantic coherence.

At the core of the framework are the Multi-Path Adaptive Evaluation (MPAE) and the Policy-Aware
Reasoning Scheduler (PARS). MPAE evaluates multiple candidate reasoning paths by assigning scores
based on semantic consistency and logical validity. This scoring mechanism supports the filtering and
aggregation of high-quality paths, ensuring that the most plausible and structurally sound reasoning chains
are selected. PARS complements this by introducing a path selection policy network trained through
reinforcement learning. This network learns to prioritize efficient and stable reasoning trajectories in future
generations. Together, these two modules form a cohesive system that enhances the model ’ s ability to
adapt to variable reasoning conditions. The framework also enables the model to retain the memory of past
reasoning patterns and apply them to new tasks, making the overall process more robust and cognitively
aligned. The complete architecture of the system is illustrated in Figure 1.

Figure 1. Overall model architecture diagram



3.1 Multi-Path Adaptive Evaluation
In Chain-of-Thought reasoning, large language models often produce multiple candidate reasoning paths in
response to a single input. These paths may vary widely in semantic coherence, logical soundness, and
consistency with the correct answer. Such variability presents both opportunities and challenges. On one
hand, the availability of diverse paths enriches the solution space and allows for flexible exploration. On the
other hand, it increases the difficulty of identifying which paths genuinely contribute to valid reasoning.
Some paths may contain partially correct steps, while others may include irrelevant or logically inconsistent
information. This highlights the need for a robust mechanism that can discriminate between high-quality and
low-quality reasoning processes.

To address this, the Multi-Path Adaptive Evaluation (MPAE) mechanism is proposed. This module is
designed to perform fine-grained assessment of multiple reasoning paths by assigning each one a score that
reflects its overall plausibility and relevance to the problem. These scores are then used to rank the paths,
filter out unreliable ones, and fuse the selected paths into a final answer. Unlike traditional approaches that
rely on static rules or manually crafted heuristics, MPAE leverages learnable path representations and
dynamic scoring strategies. This design enables the system to adapt to varying reasoning contexts and path
structures, making it more scalable and generalizable. The internal structure of MPAE, including how it
encodes, evaluates, and integrates paths, is illustrated in Figure 2.

Figure 2. MPAE module architecture
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Here, a softmax distribution is used to represent the relative importance of each path in the reasoning output,
ensuring that the scores are comparable and distinguishable. The final output reasoning path *r can be
expressed as a weighted combination, or the path with the maximum score can be directly selected:
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In addition, the MPAE mechanism also allows sparse attention fusion between paths, that is, combining the
local contents of multiple high-scoring paths at the fragment level, expressed as:
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Where  is the threshold and ][1  represents the indicator function, which is used to screen high-quality
paths for final answer generation.

Through the above mechanism, MPAE not only improves the flexibility of reasoning path selection but also
provides a stable and learnable input signal for subsequent policy schedulers (such as reinforcement learning
modules). It avoids the risk of overfitting a single path and provides a structural guarantee for the overall
improvement of reasoning quality. As an important part of the framework proposed in this study, this
mechanism introduces a new paradigm of structured, multi-path fusion and quality assessment for chain
thinking reasoning.

3.2 Policy-Aware Reasoning Scheduler
In multi-path reasoning tasks, the complexity and variability of input scenarios often exceed the capacity of
static scoring functions. These functions, while useful for basic ranking, lack the flexibility to adapt to
dynamic reasoning environments where different inputs may require fundamentally different path exploration
strategies. Static mechanisms treat each reasoning path in isolation and make selection decisions based on
fixed criteria, which may not generalize well across tasks or input types. To address this critical limitation,
this study introduces the Policy-Aware Reasoning Scheduler (PARS), a module specifically designed to bring
strategy-aware decision-making into the reasoning process.
PARS leverages reinforcement learning to train a path selection policy that dynamically guides the model in
generating and prioritizing reasoning paths. This policy is designed to learn and model complex strategic
behaviors, such as deciding the optimal timing for path sampling, identifying which candidate paths should
be explored further, and determining how attention should be distributed among available options. Unlike
traditional Chain-of-Thought reasoning pipelines that treat generation and evaluation as separate phases,
PARS integrates them into a unified scheduling framework. This integration allows the model to build a
deeper understanding of path distribution patterns and develop internal strategies that promote more stable
and consistent reasoning outputs. The architectural design of PARS, including its interaction with other
modules and its policy learning mechanism, is presented in Figure 3.



Figure 3. PARS Module Architecture

Suppose the input of the model at time step t is tx , and the corresponding path set is },...,{ ,1, Nttt trR  . We
define the policy network as )|( tt sa , where ts is the state vector, encoding the distribution information
of the input tx and the generated path, and ta is the selected reasoning action (such as path index or path
combination strategy). The policy network selects the reasoning path by sampling or greedy method:
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After the path is selected, the system obtains a reward signal tr , which is used to measure the logical
consistency brought by the choice and the rationality of the final answer. We optimize the strategy parameters
based on the expected cumulative reward:
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Where ]10( ， is the discount factor. To improve the stability of the strategy, the policy gradient method is
used to optimize  :
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Where tA
~ is the advantage function, which can be constructed by the difference between the current path

score and the baseline score.



In addition, to further constrain the semantic diversity and strategy exploration ability of path selection, we
introduce an entropy regularization term in the loss function to enhance the strategy exploration ability:

)()(  HJL 

Where )( H represents the entropy term of the strategy, and  is the weight hyperparameter, which is
used to control the smoothness and diversity of the strategy distribution.
By introducing the PARS module, the model can achieve adaptive path scheduling and strategy learning
when facing multi-path reasoning tasks, thereby actively mining potential high-quality reasoning solutions
from the path space. This strategy-aware mechanism not only improves the selectivity and flexibility of the
reasoning process but also lays a higher-quality structural foundation for subsequent path fusion and answer
generation. PARS plays a strategic decision-making role in the entire reasoning architecture, promoting the
evolution of chain thinking reasoning from static behavior to dynamic scheduling.

4. Experimental Results
4.1 Dataset
The main dataset used in this study is GSM8K. It is a high-quality natural language reasoning dataset
focused on elementary school mathematics problems. GSM8K is widely used to evaluate the Chain-of-
Thought abilities of large language models. It contains approximately 8,500 math problems, each presented
in natural language. Every problem includes a detailed reasoning process and a final answer. The questions
cover basic arithmetic, unit conversion, multiplicative relations, and other common logical structures.

The dataset is designed to test a model's ability to understand problem context, build multi-step reasoning
processes, and generate structured explanations. Each question requires the model not only to produce the
correct answer but also to present a reasonable sequence of intermediate steps. Therefore, GSM8K aligns
naturally with Chain-of-Thought reasoning and is especially suitable for evaluating multi-path generation
and path selection.

In addition, GSM8K has a clear format and standardized annotations. It supports various reasoning
paradigms, including manual prompt construction, automatic path sampling, and self-consistency
mechanisms. Its moderate difficulty and broad coverage make GSM8K a standard benchmark for studies on
Chain-of-Thought optimization methods such as MPAE and PARS. It provides a stable and reliable
foundation for evaluation in this research.

4.2 Experimental Setup

In this study, we build a Chain-of-Thought optimization framework based on the pre-trained language
model ChatGLM. The goal is to explore its behavior and performance in multi-path reasoning tasks.
ChatGLM has strong capabilities in Chinese language understanding and generation. It supports long-text
input and complex logical structure modeling. This makes it a suitable foundation for our framework. To
enable path scoring, policy learning, and dynamic reasoning scheduling, we integrate the MPAE and PARS
modules into ChatGLM. These modules allow the model to perform effective path selection and strategy
optimization across multiple reasoning trajectories.

All experiments are conducted on a single high-performance GPU. We use FP16 precision for both
inference and fine-tuning. Path generation is configured with a fixed temperature and maximum length. The
policy network and path scoring function are implemented using standard Transformer submodules. We use
the Adam optimizer for model updates. All experiments are performed on the GSM8K dataset. We follow
consistent data splits and preprocessing procedures. Table 1 lists the key parameters used in the
experimental setup.



Table 1: Detailed Experimental Setup

Parameters Setting Value
Basic Model ChatGLM
Dataset GSM8K

Path Generation Temperature 0.7
Maximum number of paths 8
Encoder hidden dimension 768
Optimizer Adam
Learning Rate 3e-5
Batch size 16
Epochs 200
Inference accuracy FP16

4.3 Experimental Results

1) Comparative experimental results

This paper first gives the comparative experimental results, as shown in Table 2.

Table 2: Comparative experimental results

Method ACC CoT Consistency Path Robustness

Standard CoT[21] 74.6 68.2 65.5

Self-Consistency[22] 80.2 75.4 72.6

ReAct[23] 82.7 78.1 75.9

Ours 85.9 83.2 81.5

As shown in the results in Table 2, the proposed method outperforms mainstream Chain-of-Thought
frameworks across all evaluation metrics. This confirms the effectiveness of introducing Multi-Path Adaptive
Evaluation (MPAE) and the Policy-Aware Reasoning Scheduler (PARS). In particular, the method achieves
an accuracy (ACC) of 85.9 percent. This is more than 11 percentage points higher than the standard CoT
method. The result shows that more refined path scoring and selection strategies can guide the model to
produce more reliable answers.
The proposed method also shows clear advantages in CoT Consistency. This metric measures the logical
alignment among different reasoning paths and reflects the stability of the reasoning process. Traditional CoT
methods often suffer from semantic drift due to path variability. MPAE reduces this inconsistency by
modeling path quality and applying normalized scoring. In addition, the policy network favors sampling of
high-quality paths. This further improves structural alignment across paths and leads to greater consistency.



Path Robustness measures performance stability under multiple path sampling conditions. The results show
that the proposed method reaches 81.5 percent in this metric. This is significantly better than the baseline
methods. The result indicates that PARS not only selects the current best path but also learns to optimize path
strategies over time. With reinforcement learning, the model develops a dynamic scheduling policy that
supports stable decisions under uncertain path distributions. This improves the model ’ s adaptability to
diverse inputs and task variations.
Overall, this study uses MPAE for fine-grained path-level quality modeling and introduces PARS to optimize
reasoning strategies. These two components work together to improve path generation, selection, and
execution stability systematically. The results clearly show that traditional static generation and voting
approaches face limitations in complex reasoning tasks. In contrast, the proposed framework provides a new
solution that enhances controllability and interpretability for large language models.

2) Ablation Experiment Results

This paper further gives the results of ablation experiments, and the experimental results are shown in Table 3.

Table 3: Ablation Experiment Results

Method ACC CoT Consistency Path Robustness
Baseline 76.4 70.1 67.3

+MPAE 81.0 78.6 75.2
+PARS 79.3 74.5 73.1
Ours 85.9 83.2 81.5

As shown in the ablation results in Table 3, the two core modules proposed in this study, Multi-Path Adaptive
Evaluation (MPAE) and the Policy-Aware Reasoning Scheduler (PARS), play a key role in improving final
performance. The baseline model, without any path optimization mechanism, performs poorly across all
metrics. This indicates that standard Chain-of-Thought prompting alone cannot effectively handle path
uncertainty and reasoning consistency. It also highlights the importance of path selection and reasoning
scheduling in complex tasks.
After introducing the MPAE module, the model shows significant improvements in both accuracy and
consistency. In particular, CoT Consistency increases from 70.1 percent to 78.6 percent. This result shows
that scoring and normalized selection of reasoning paths help the model focus on logically coherent and
semantically valid sequences. It also reduces interference from redundant or incorrect reasoning branches. At
the same time, Path Robustness improves, demonstrating MPAE’s ability to model stability in complex path
spaces. This provides structured quality control during generation.
When only the PARS module is added, the model also achieves clear performance gains. Path Robustness
increases from 67.3 percent to 73.1 percent. This shows that even without explicit path scoring, the policy
scheduler can learn improved path selection strategies through reinforcement learning. It avoids random
sampling and reduces the influence of suboptimal paths. PARS provides an adaptive mechanism that helps
the model dynamically adjust its strategy during long reasoning processes. This strengthens behavioral
consistency and generation stability.
With both MPAE and PARS integrated, the model achieves the best results across all three metrics. This
demonstrates the complementary and synergistic effects of the two modules. MPAE offers fine-grained
quality scoring at the path level. PARS implements decision-level strategy scheduling. Together, they form a



reasoning framework that is structured, controllable, and stable in output. This design improves reasoning
performance and reflects a shift in Chain-of-Thought optimization from pure generation toward a
combination of strategy and structure.

3) Robustness testing under high noise path injection

This paper also presents a robustness test under high noise path injection, and the experimental results are
shown in Figure 4.

Figure 4. Robustness testing under high noise path injection
Figure 4 shows the robustness performance of the proposed reasoning framework under different levels of
noise path injection. The results are presented in terms of accuracy and Chain-of-Thought consistency. As the
proportion of injected noise increases, the overall model performance decreases. However, the drop is steady
and the curves remain smooth. This indicates strong resistance to interference. Even when 40 percent of the
paths are corrupted with high noise, the model maintains an accuracy above 0.74. This shows that the system
does not collapse under severe path contamination.
This result highlights the important role of the MPAE module in path quality evaluation. By modeling
multiple paths at the vector level and applying score normalization, the model can still identify high-quality
reasoning chains when the path set is affected by noise. This mechanism prevents noisy paths from
dominating the output. It provides structural support for reasoning stability in open-ended path spaces.
In addition, the CoT Consistency curve declines slightly faster than the accuracy curve. This suggests that
while the final answers are somewhat tolerant to noise, the intermediate reasoning structures are more
vulnerable. The result further confirms that language models alone cannot build robust reasoning chains.
Strategy-level intervention is necessary. The PARS module learns a path scheduling policy. It increases the
model's ability to actively select paths and supports consistency in reasoning structure.
In summary, this experiment demonstrates the robustness of the proposed model under extreme conditions. It
also emphasizes the importance of combining multi-path modeling with strategic scheduling. In real-world
applications where uncertainty or misleading paths may occur, this mechanism ensures structural clarity and
behavioral consistency in the output of large language models. It shows strong potential for practical
deployment.



4) Analysis of the impact of different inference temperature settings on path distribution

This paper also gives an analysis of the impact of different inference temperature settings on path
distribution, and the experimental results are shown in Figure 5.

Figure 5. Analysis of the impact of different inference temperature settings on path distribution
Figure 5 illustrates the impact of different reasoning temperature settings on the structure of path distributions.
The analysis is based on two dimensions: Path Diversity and Valid Path Ratio. The results show that
temperature is a critical hyperparameter for controlling the characteristics of generated paths. It not only
shapes the structure of the path space but also affects the stability and robustness of Chain-of-Thought
reasoning. Higher temperatures lead the model to generate more diverse paths during sampling. This
increases the expressive range but also introduces potential noise and uncertainty.
In the left panel, we observe a continuous rise in path diversity as the temperature increases from 0.2 to 1.0.
The growth follows a clear linear trend. This indicates that higher temperatures encourage the model to break
from fixed patterns and produce more structurally varied reasoning paths. Such diversity is beneficial for
exploring alternative reasoning logic. For frameworks relying on multi-path evaluation and policy scheduling,
this forms a necessary foundation for enhanced exploration and candidate space construction.
However, the right panel shows that the Valid Path Ratio decreases as temperature increases. The decline
becomes sharper after the temperature exceeds 0.6. This suggests that while diversity improves, the
proportion of logically consistent and task-relevant paths decreases. As a result, the useful information
density in the path space drops. This presents challenges for Chain-of-Thought-based systems. Under high
temperatures, MPAE must have stronger filtering capabilities, and PARS must manage increased uncertainty
during decision-making.
Therefore, setting a proper temperature is key to building high-quality reasoning processes. Low
temperatures yield concentrated paths but may lack coverage. High temperatures produce richer paths but
include more noise. The proposed MPAE and PARS modules are designed to address this trade-off. They act
from the perspectives of path selection and policy learning. Together, they ensure a dynamic balance between
path diversity and effectiveness in the final reasoning output.

5) Path fusion strategy (maximum/weighted/average) comparison experiment

Finally, this paper presents a comparative experiment of path fusion strategies (maximum/weighted/average),
and the experimental results are shown in Figure 6.



Figure 6 presents the comparative results of three path aggregation strategies — maximum, weighted, and
average—evaluated across accuracy, reasoning consistency, and robustness. The experiment shows that the
choice of fusion method has a significant impact on final reasoning quality. This is especially true in multi-
path generation settings, where behavioral differences among strategies directly affect output stability and
interpretability.

Figure 6. Path fusion strategy (maximum/weighted/average) comparison experiment

The figure shows that the weighted fusion strategy performs best on all three metrics. It achieves an accuracy
of 0.859, a consistency score of 0.832, and a robustness of 0.815. These results indicate that the weighting
mechanism provided by the MPAE module helps suppress suboptimal paths and highlight high-quality
reasoning chains. This enables more effective path integration without sacrificing diversity. In contrast, the
maximum strategy, though simple and direct, tends to rely too heavily on a single path. If that path contains
noise or errors, it may negatively affect the final output.
The average fusion strategy shows intermediate performance. While it theoretically balances all paths, it fails
to consider differences in path quality. As a result, low-quality paths may be incorporated into the final
decision, which weakens the contribution of stronger reasoning chains. Although this method shows a certain
level of stability, it falls short in high-performance settings.
This experiment further confirms the importance of path scoring and weighted selection in the MPAE design.
By modeling path distributions and enabling structured fusion, the weighted strategy improves accuracy,
coherence, and robustness simultaneously. It does so without introducing extra computation during
generation. This dual-level optimization of structural quality and strategic expression makes the proposed
reasoning framework more adaptive and better suited for practical use.

5. Conclusion
This paper addresses the stability and controllability challenges of large language models in multi-path
Chain-of-Thought reasoning. It proposes an optimization framework that integrates structural evaluation and
strategic scheduling. The framework consists of two core modules. The Multi-Path Adaptive Evaluation
(MPAE) module identifies and focuses on high-quality reasoning paths. The Policy-Aware Reasoning
Scheduler (PARS) uses reinforcement learning to optimize path selection strategies. These two components
work together to introduce a new paradigm of dynamic structural optimization and strategy-driven reasoning
while preserving the model's original language generation capability. Experimental results show significant
improvements in reasoning accuracy, consistency, and robustness, confirming the effectiveness of structured
reasoning mechanisms for complex task modeling. By introducing MPAE, this study effectively mitigates the
issues of path redundancy and quality instability found in traditional Chain-of-Thought methods. The path-
scoring mechanism improves the model’s ability to identify promising paths. It also builds a learnable space



for path quality representation, providing a basis for structural optimization during reasoning. The PARS
module further drives the reasoning process from passive sampling to active scheduling. It enables the model
to explore and optimize paths adaptively. This architectural shift from language generation to strategic
reasoning enhances decision stability and interpretability in real-world applications.
The proposed framework contributes not only at the methodological level but also offers practical value. In
domains such as education, healthcare, and financial decision-making, where transparency and stability of
reasoning paths are critical, the framework improves reliable reasoning performance and reduces uncertainty
in outputs. For tasks requiring multi-step planning and high fault tolerance, such as automated process control
and intelligent question answering the proposed structure shows good transferability and broad applicability.
It supports the transition of large language models from text-generation tools to cognitive systems with
reasoning capabilities. Looking ahead, this method offers several directions for future work. One direction is
to explore finer-grained path structure modeling, such as using causal graphs or multimodal information, to
improve path discrimination in high-dimensional task spaces. Another is to enhance the scheduling module
by incorporating external environment signals, making it adaptive across tasks and domains. In addition,
integrating this framework with retrieval-augmented mechanisms or symbolic reasoning systems could offer
further opportunities. These advances may drive continuous progress toward general-purpose reasoning in
language models.
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