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Abstract: This paper proposes a microservice anomaly detection method based on the fusion of
Generative Adversarial Networks and temporal autoencoders. It aims to address the problems of scarce
anomalous data and insufficient detection accuracy in distributed systems. The proposed framework consists
of two core modules: a Conditional Multi-Scale Feature-enhanced Generative Adversarial Network (CMSF-
GAN) and an Adaptive Threshold Temporal Autoencoder (ATTAE). CMSF-GAN generates diverse and
semantically consistent anomalous traffic samples by using prior knowledge of anomaly types and a multi-
scale feature extraction mechanism. This improves the anomaly coverage during the training phase. ATTAE
models multivariate time series data through an LSTM structure. It introduces a dynamic threshold
adjustment mechanism to achieve high sensitivity in detecting complex and subtle anomalies. Extensive
experiments are conducted on two public datasets, Alibaba Cluster Trace 2018 and SWaT. The results are
compared with several state-of-the-art methods. The proposed model demonstrates advantages in accuracy,
generalization, and robustness. In addition, transferability evaluation, perturbation intensity tests, and
hyperparameter sensitivity analysis further show the model's stability and practical potential in complex
scenarios.
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1. Introduction
With the widespread adoption of microservice architectures in large-scale distributed systems, the complex
service invocation relationships and dynamic operating environments have posed increasing challenges to the
stability and robustness of microservice systems. Microservices decompose traditional monolithic
applications into many small services[1,2]. This decoupling brings flexibility and scalability but also
introduces more potential paths for anomaly propagation[3]. In a microservice system, performance
degradation or failure of any subsystem can rapidly impact the overall business system through the call chain,
forming a chain reaction. Therefore, anomaly traffic detection, abnormal scenario simulation, and robustness
verification have become critical research directions for ensuring the stable operation of microservice
systems[4].
Traditional anomaly detection methods often rely on static rules or simple statistical models. These methods
struggle to cope with the complex and variable anomaly patterns in microservice environments. During
system operation, anomaly traffic can manifest in various ways. It may appear as a sudden surge in request
volume or as minor drifts in response time. Since anomaly features are often hidden in high-dimensional and
strongly time-dependent data, traditional methods face problems of insufficient accuracy and slow response



in practice. Moreover, due to the scarcity and unpredictability of anomaly events, the number of available
anomaly samples in real systems is extremely limited. This further restricts the effectiveness of supervised
learning methods. Thus, accurately simulating and generating diverse anomaly traffic scenarios with limited
anomaly data has become a key problem for enhancing the robustness testing capabilities of microservice
systems[5,6].
In recent years, Generative Adversarial Networks (GANs) have shown great potential as powerful generative
models in simulating complex data distributions. Through an adversarial training mechanism, GANs can
learn the deep feature distribution of original data and generate highly realistic new samples. Applying GANs
to the generation of anomalous microservice traffic can effectively address the issue of data scarcity[7,8,9]. It
can enrich the coverage of system testing and enhance the comprehensiveness of anomaly detection and
defense mechanisms. Furthermore, by controlling generation conditions, it is possible to systematically
simulate different types and intensities of anomalies. This enables targeted robustness testing of microservice
systems and provides reliable data support for subsequent adaptive optimization and resource scheduling
strategies.
In the field of anomaly detection, autoencoder (AE) models based on Long Short-Term Memory (LSTM)
networks have become important tools for processing microservice traffic data. Their superior capability in
sequential modeling and reconstruction is critical. Traffic data usually exhibit strong temporal characteristics,
which traditional static feature extraction methods fail to capture effectively. LSTM-AE models learn the
latent patterns in historical data and perform encoding and reconstruction of input data. They use
reconstruction errors to identify potential anomalies. Especially under conditions where anomaly patterns are
subtle or highly variable, LSTM-AE models demonstrate strong sensitivity in anomaly detection. Combining
LSTM-AE with GAN-generated anomalous traffic not only validates the authenticity and effectiveness of the
generated samples but also provides in-depth insights into the anomaly resistance capabilities of each
component under the microservice architecture[10].
In summary, the integration of GAN-based anomaly traffic generation and LSTM-AE-based anomaly
detection forms a novel robustness testing framework for microservice systems. This framework overcomes
the limitations of traditional methods under conditions of scarce anomaly samples. It enables a more
intelligent and dynamic evaluation of microservice system stability and recovery capabilities under complex
anomalous environments. Further research in this direction is expected to provide new theoretical foundations
and technical support for ensuring the stability and adaptive operation of next-generation distributed systems.
It will also promote the development of intelligent system monitoring and optimization technologies.

2. Related work
2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a type of deep generative model[11,12,13,14]. They establish
a game relationship between the generator and the discriminator through adversarial training. This drives the
generator to learn the distribution of real data. The generator continuously optimizes its outputs to generate
data that increasingly resemble real samples. Meanwhile, the discriminator strives to distinguish between
real and generated samples. Through this dynamic adversarial mechanism, GANs can effectively capture
complex data features[15]. They have shown outstanding performance in fields such as image generation,
speech synthesis, and data augmentation. When handling scarce data or modeling difficult distributions,
GANs demonstrate strong potential. They are particularly suitable for generating and supplementing
anomalous samples[16].

As research has progressed, the GAN framework has evolved. Many improved models have been proposed
to address problems such as unstable training and mode collapse in the original design[17]. By introducing
gradient penalties, optimizing discriminator structures, and adding conditional inputs, the stability of GAN



training and the diversity of generated samples have been significantly enhanced. Conditional GANs,
progressive GANs, and GANs based on improved loss functions can guide the generation process according
to specific conditions. This further improves the controllability and quality of generated samples. These
developments provide a solid foundation for the high-quality synthesis of anomalous data in complex
environments[18,19].

In the fields of system robustness testing and anomaly detection, GANs are widely used to simulate and
expand anomaly scenario data. Real anomaly events in distributed systems are highly uncertain and sparse.
Relying on traditional data collection methods often fails to obtain comprehensive anomaly datasets. By
learning from normal traffic and existing anomaly traffic features, GANs can generate more diverse and
realistic anomaly samples[20]. These samples align with actual business characteristics. Thus, GANs play a
critical role in simulating microservice anomaly traffic, evaluating system response capabilities, and training
efficient anomaly detection models. Considering the complex traffic dynamics in microservice architectures,
the introduction of GANs provides an effective solution for building more comprehensive and realistic
anomaly testing environments.

2.2 Anomaly Detection
Anomaly detection is a key technology for ensuring system stability and security. It is widely used in fields
such as network security, industrial monitoring, and financial risk control. Traditional anomaly detection
methods mainly rely on statistical modeling, rule matching, or machine learning classifiers[21]. They identify
anomalies by analyzing significant deviations in the data. Although these methods offer advantages such as
simple structure and high computational efficiency, they often show low detection accuracy and adaptability
in high-dimensional, dynamic, and nonlinear data environments. In complex systems, they are prone to false
alarms and missed detections, limiting their practical effectiveness[22].
With the development of deep learning, anomaly detection methods based on autoencoders have gradually
become a research hotspot. Autoencoders use unsupervised learning to encode and reconstruct normal data.
They can capture the latent structural information of the data[23,24]. When dealing with sequential data,
autoencoders combined with Long Short-Term Memory (LSTM) networks can effectively model temporal
dependencies. They are sensitive to both local and global changes in the data, enabling more accurate
anomaly identification. The detection mechanism based on reconstruction errors allows this method to
perform well when facing small and complex anomaly patterns. It is particularly suitable for processing
microservice traffic data with strong temporal characteristics[25].
In microservice architectures, anomaly detection faces multiple challenges such as large data volumes, highly
variable traffic patterns, and extreme scarcity of anomaly samples. In this context, anomaly detection
frameworks based on deep autoencoder techniques have been widely applied in microservice system
monitoring and fault prediction. By training on normal operational data, autoencoders can learn the normal
behavior patterns of microservice traffic. During testing, they identify potential anomalies based on
reconstruction errors. This approach not only improves the level of automation in anomaly detection but also
effectively reduces the reliance on large amounts of anomaly samples. It provides strong support for building
efficient and intelligent microservice anomaly detection systems.

3. Method
To address the problems of scarce anomaly traffic and insufficient detection sensitivity in microservice
systems, this paper proposes a novel framework that integrates Generative Adversarial Networks with
temporal anomaly detection. First, for anomaly traffic generation, an improved GAN-based model is
designed. It introduces conditional labels and a multi-scale feature extraction mechanism. This enables the
generator to create diverse and fine-grained anomaly traffic patterns for different types of anomalies. The
quality and coverage of generated anomaly samples are significantly enhanced. For anomaly detection, an



autoencoder model combined with Long Short-Term Memory (LSTM) networks is constructed. By
introducing dynamic reconstruction threshold adjustment and traffic pattern adaptive encoding strategies,
the model effectively improves the identification capability for subtle and evolving anomalies. The overall
approach achieves collaborative optimization between traffic generation and anomaly detection. It addresses
the scarcity of anomaly samples during the training phase and improves the response accuracy to complex
anomaly scenarios during the detection phase. This provides a new technical pathway for robustness testing
and intelligent optimization of microservice systems. The model architecture is shown in Figure 1.

Figure 1. Overall model architecture diagram

3.1 CMSF-GAN

In this study, in order to solve the problem of scarcity of abnormal traffic samples of microservices, a
conditional multi-scale feature enhanced generative adversarial network (CMSF-GAN) is proposed to
simulate high-quality abnormal traffic patterns. Based on the standard generative adversarial network, the
model introduces the conditional vector of the abnormal type and integrates the multi-scale feature
extraction module inside the generator to improve its modeling ability of complex abnormal structures. The
architecture of this module is shown in Figure 2.

Figure 2. CMSF-GAN module architecture



The entire CMSF-GAN consists of a generator G and a discriminator D, where G takes the abnormal type
condition c and the latent variable z as input, and outputs the generated samples that fit the target traffic
distribution. Its basic input form can be expressed as:

),(' czGx 

),0(~ INz represents the latent variable sampled from the standard normal distribution, kRc represents
the one-hot encoding vector of the anomaly type, and 'x is the generated abnormal traffic sample. In order
to enhance the model's ability to model local abnormal features and global behavior patterns, a multi-scale
feature extraction unit is introduced into the generator to model high-frequency short-term changes and low-
frequency long-term patterns respectively, so that the generated samples are closer to the complex
manifestations of real traffic anomalies. In addition, in addition to judging whether it is true or false, the
discriminator also performs auxiliary classification of the input abnormal category to ensure the semantic
consistency and structural rationality of the generated samples.

The overall adversarial loss function is designed as a combination of conditional GAN and classification
auxiliary terms, as follows:
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In order to enhance the alignment of the statistical characteristics of the generated samples and the real
traffic, feature matching loss is further introduced to constrain the activation of the intermediate layer so that
the generated samples and the real samples are consistent in the feature space. Suppose the activation feature
of a certain intermediate layer in the discriminator is )(xf , then:
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The goal of the final generator is to minimize the following total loss function:
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The optimization goal of the discriminator is to maximize GANL . Through the above joint optimization
strategy, CMSF-GAN can not only generate samples close to the distribution of real abnormal traffic, but
also maintain semantic consistency with specific abnormal categories in structure. In addition, the
discriminator's discrimination accuracy continues to improve during the training process, which in turn
prompts the generator to synthesize more confusing abnormal traffic and promote the convergence of the
entire adversarial process.

By introducing abnormal category control, feature alignment constraints and multi-scale structural
enhancement, CMSF-GAN has the ability to generate diverse, real and controllable microservice abnormal
traffic. Its output can be used as an important means of data enhancement, and can also be used as a
robustness verification input for subsequent anomaly detection systems, solving the problem of scarce
samples and single simulation scenarios in abnormal testing of traditional microservice systems. The
generated samples are no longer statically constructed "test data", but "adversarial input" that dynamically
adapts the system status and business characteristics, bringing higher generalization capabilities to system
robustness modeling.



3.2 ATTAE
In order to further improve the accuracy and timeliness of anomaly detection in microservice traffic, this
paper designs a time series autoencoder model with an adaptive threshold mechanism, called Adaptive
Thresholding Temporal Autoencoder (ATTAE). This model builds the encoder and decoder structure with
the long short-term memory network (LSTM) as the core, which can effectively extract the temporal
dependency features in the traffic sequence. The model architecture is shown in Figure 3.

Figure 3. ATTE module architecture

In the training phase, ATTAE uses only normal traffic data for unsupervised learning, and tries to learn a
low-dimensional expression of normal behavior in the latent space. In the testing phase, the error between
the input data and its reconstruction result is used as an abnormality indicator to achieve sensitive detection
of unknown anomalies. Assuming the input traffic sequence is A, the encoder maps it to a latent vector h:
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The decoder then reconstructs the latent representation h into an estimate x' of the original sequence:
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The reconstruction error is defined as the mean square error (MSE) between the input and output:
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In traditional methods, anomaly detection usually uses a fixed threshold to perform binary classification of
reconstruction errors. However, considering the temporal dynamics of microservice system traffic and the
continuous changes in business load, fixed thresholds may lead to false positives or false negatives. To this
end, ATTAE introduces an adaptive threshold mechanism to automatically adjust the judgment criteria
according to the error distribution in different time periods. Specifically, a sliding window w is introduced
and the mean-variance modeling of the historical error distribution is performed to dynamically calculate the
detection threshold t :
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t and t represent the mean and standard deviation of the historical reconstruction error in the window,
respectively, and  is the coefficient for adjusting the sensitivity. Finally, if the error recL at a certain
moment exceeds the threshold t , the moment is marked as abnormal:
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In addition, in order to enhance the ability to express complex abnormal patterns, ATTAE integrates
information from multi-scale time windows in the encoding stage, and enhances the model's ability to
jointly model short-term fluctuations and long-term trends by cascading LSTM layers of different lengths.
This multi-scale time series encoding strategy not only improves the sensitivity to sudden anomalies, but
also enhances the robustness to periodic interference. Through the combination of the above structural
design and the dynamic judgment mechanism, ATTAE can accurately identify a variety of abnormal
behaviors in a highly non-stationary microservice traffic environment, and provide high-confidence
abnormal signals for subsequent system response and scheduling strategies.

4. Experimental Results
4.1 Dataset

1) Alibaba Cluster Trace 2018

Alibaba Cluster Trace 2018 is a large-scale dataset collected from real-world production environments. It
includes multiple dimensions of system metrics such as CPU usage, memory consumption, container
scheduling, task submission, and task completion. The data come from Alibaba's online microservice
infrastructure. It features high concurrency, high-frequency sampling, and complex service invocation
relationships. These characteristics make it suitable for simulating the operational state of microservice
systems under real business pressure. The dataset provides continuous time-series records at both container
and task levels. This offers a complete temporal foundation for building anomaly detection and traffic
generation models.

In this study, a subset of task instances from the dataset is selected. Their resource usage metrics, such as
CPU, memory, and I/O, are extracted to form multivariate time-series samples over continuous time
windows. Since the dataset does not contain explicit anomaly labels, synthetic anomalies are introduced to
create training samples. These include patterns such as sudden spikes, periodic drift, and resource jitter
injected into normal sequences. This part is handled by the CMSF-GAN module, which learns and generates
these patterns. It expands the anomaly coverage and improves the generalization ability of the detector.

Meanwhile, the ATTAE module is trained in an unsupervised manner using only normal traffic data. It
learns the resource usage patterns of normal tasks. During the testing phase, the model's ability to identify
anomalies in an unlabeled environment is evaluated. This is done by comparing with both GAN-generated
synthetic anomalies and manually constructed pseudo-anomalies. Since the Alibaba dataset closely
resembles real microservice systems in both granularity and scale, it serves as an effective benchmark. It
helps validate the stability, scalability, and practical value of the proposed method in complex system
environments.



2) SWaT Dataset

The SWaT (Secure Water Treatment) dataset comes from a testbed built using a real industrial control
system. It simulates a complete water purification process. The system includes pumps, valves, sensors,
PLC controllers, and other physical and control components. The dataset records signals from 51 sensors
and actuators at a one-second sampling rate. It covers key indicators such as water level, flow rate, pressure,
and valve status. The data is divided into two parts. The first part contains seven days of normal operation.
The second part includes four days of data with injected attacks. These attacks represent typical scenarios
such as DoS, replay, and command injection. Each attack segment is labeled with its start time, end time,
and attack type.

In this study, the SWaT dataset is used to evaluate the detection accuracy and generation quality of the
proposed method under labeled anomaly conditions. During training, the ATTAE module uses only normal
time-series data. It learns the evolution patterns of multivariate industrial signals under stable conditions.
Anomalies are then detected based on reconstruction errors in an unsupervised manner. In the testing phase,
the full labeled dataset is used. The model's ability to detect different types of attacks is evaluated, with a
focus on its response to both sudden and gradual anomalies.

For anomaly generation, the CMSF-GAN module builds the training set using normal signals and known
anomaly types. It generates synthetic samples using a conditional input mechanism. Compared with
manually constructed anomalies, this module can automatically learn the evolution patterns of attack
behaviors. It generates data that better match physical constraints and temporal logic. The generated samples
can be used to expand the training set and improve the robustness of the detection model. They can also be
used to simulate potential unknown attacks, allowing further validation of the system's detection and
response capabilities in unseen scenarios. The controllability and accurate labeling of the SWaT data ensure
reproducibility and reliability of experimental results. This supports the generalizability of the proposed
method in safety-critical systems..

4.2 Experimental setup

All experiments in this paper were conducted using Python with PyTorch as the deep learning framework,
running on a workstation equipped with an NVIDIA RTX 3090 GPU and 128GB of RAM. For both datasets,
all input features were normalized to the [0,1] range using min-max scaling, and time series were segmented
into fixed-length windows to preserve temporal continuity. The models were trained using the AdamW
optimizer with early stopping based on validation loss to prevent overfitting. For fair comparison, all
baseline methods were re-implemented or tested using their officially released code with recommended
hyperparameters. Evaluation metrics including Accuracy, AUC, and F1-score were computed on the test set
to measure the overall detection performance.

4.3 Experimental Results

3) Comparative experimental results

In the experimental part, this paper first gives the comparative experimental results of two datasets. The first
one is the experimental results of the Alibaba Cluster Trace 2018 dataset, as shown in Table 1.

Table 1: Comparative experimental results(Alibaba Cluster Trace)

Method Acc(%) AUC F1-Score



MAD-GAN[26] 86.7 0.894 0.781

OmniAnomaly[27] 88.1 0.902 0.798

GDN[28] 89.4 0.915 0.811

USAD[29] 87.2 0.899 0.790

DAGMM[30] 84.5 0.881 0.752

Ours 91.3 0.931 0.835

The experimental results presented in Table 1 demonstrate the effectiveness of the proposed method
compared with several recent and representative deep learning-based anomaly detection models on the
Alibaba Cluster Trace 2018 dataset. Among the baseline models, GDN achieves relatively high performance,
benefiting from its graph structure modeling of multivariate time series. OmniAnomaly and MAD-GAN also
show competitive results due to their capability of learning complex temporal dependencies through
variational inference and adversarial training, respectively. However, these methods still exhibit limitations in
capturing fine-grained anomaly features under highly dynamic microservice environments.
The proposed CMSF-GAN + ATTAE framework achieves the highest performance across all evaluation
metrics, with an accuracy of 91.3%, an AUC of 0.931, and an F1-score of 0.835. These improvements are
attributed to the design of the conditional multi-scale feature enhanced GAN, which allows the generator to
synthesize more realistic and semantically diverse anomalous traffic patterns. The generated samples enrich
the diversity of training data and provide robust supervision for the downstream detection model.
Additionally, the adaptive thresholding mechanism in the ATTAE module effectively adapts to varying load
conditions in the microservice traffic, enhancing the sensitivity to subtle and transient anomalies.
Overall, the results indicate that the joint optimization of generative modeling and temporal anomaly
detection yields superior detection capability in complex and large-scale distributed systems. The consistent
improvements in F1-score, particularly over GAN-based and AutoEncoder-based baselines, highlight the
ability of the proposed approach to maintain a balanced trade-off between precision and recall, which is
essential for anomaly detection tasks where both false positives and false negatives can lead to significant
system performance degradation.
Furthermore, the experimental results of SWaT Dataset are given, as shown in Table 2.

Table 2: Comparative experimental results(SWaT Dataset)

Method Acc(%) AUC F1-Score

MAD-GAN[26] 68.3 0.712 0.642

OmniAnomaly[27] 70.1 0.733 0.665

GDN[28] 72.4 0.751 0.678

USAD[29] 69.8 0.727 0.659

DAGMM[30] 66.7 0.694 0.625

Ours 71.5 0.742 0.684

The comparative results on the SWaT dataset, as presented in Table 2, reveal that anomaly detection in
industrial control systems remains a challenging task for most models. Among the baseline methods, GDN



achieves the highest accuracy at 72.4%, demonstrating the strength of graph-based modeling in capturing
correlations among multivariate sensor signals. OmniAnomaly and USAD also deliver reasonably
competitive performance, leveraging sequential modeling and reconstruction-based detection to identify
deviations. However, all baseline methods experience performance drops compared to their results on IT or
cloud-based datasets, likely due to the unique dynamics and noise characteristics of physical systems.
The proposed CMSF-GAN + ATTAE framework achieves an accuracy of 71.5% and an F1-score of 0.684,
which is slightly below GDN in terms of overall accuracy but exceeds other methods in balanced detection
capability. The F1-score improvement indicates that the model is more effective in maintaining equilibrium
between false positives and false negatives, a critical requirement in safety-sensitive scenarios like SWaT.
The AUC value of 0.742 further supports the model's stable discrimination ability across thresholds, despite
fluctuations in input patterns. The use of adversarially generated anomaly patterns helps expand the detection
coverage, even though the diversity of industrial anomalies presents additional modeling challenges.
Overall, although the performance gains are not as significant as on the Alibaba Cluster Trace dataset, the
proposed method demonstrates consistent and reliable behavior. The results suggest that while microservice-
oriented generative models may require additional adaptation for cyber-physical domains, the integration of
multi-scale feature generation and adaptive thresholding still contributes to robust anomaly identification in
complex, sensor-driven environments.

4) Hyperparameter sensitivity experiment results

This paper further tests the experimental results of hyperparameter sensitivity, mainly conducting different
analyses on learning rates and optimizers, and the dataset used is the Alibaba Cluster Trace 2018 dataset.
First, the experimental results of different learning rates are given, as shown in Table 3.

Table 3: Hyperparameter sensitivity experiment results(Learning Rate)

Learning Rate Acc(%) AUC F1-Score
0.004 87.6 0.903 0.796
0.003 89.2 0.914 0.815
0.002 90.7 0.926 0.827
0.001 91.3 0.931 0.835

The results shown in Table 3 illustrate the sensitivity of the proposed model to different learning rate settings.
When the learning rate is set relatively high (e.g., 0.004), the model exhibits unstable convergence behavior,
leading to lower accuracy (87.6%) and reduced AUC and F1-score. This is likely due to overshooting during
optimization, which prevents the generator and discriminator from reaching a stable adversarial equilibrium
and negatively impacts the reconstruction quality in the anomaly detection module.
As the learning rate decreases, performance steadily improves across all evaluation metrics. At 0.002 and
0.003, the model achieves balanced training dynamics, enabling both CMSF-GAN and ATTAE to learn more
representative features and stable temporal patterns. The gains in AUC and F1-score suggest that the model
becomes more capable of distinguishing subtle anomalies while maintaining robustness against false
positives.
The best performance is achieved at a learning rate of 0.001, where the accuracy reaches 91.3% and the F1-
score peaks at 0.835. This indicates that the model benefits from more refined gradient updates, allowing both
modules to co-adapt effectively. The result confirms that a moderately low learning rate contributes to the
stability of adversarial training and enhances temporal encoding precision, making it the optimal choice for
the proposed framework in this experimental setting.



Furthermore, the experimental results of the optimizer are given, as shown in Table 4.

Table 4: Hyperparameter sensitivity experiment results(Optimizer)

Optimizer Acc(%) AUC F1-Score
AdaGrad 86.1 0.889 0.775
SGD 84.7 0.874 0.761
Adam 89.8 0.917 0.819
AdamW 91.3 0.931 0.835

The results presented in Table 4 demonstrate the impact of different optimizers on the performance of the
proposed model. It is observed that traditional optimizers such as SGD and AdaGrad yield relatively lower
accuracy and F1-scores, indicating that simple gradient descent or early-stage adaptive learning is insufficient
for handling the complex optimization landscape of the CMSF-GAN and ATTAE modules. The lack of
effective momentum or sophisticated adaptive mechanisms results in unstable training dynamics and
suboptimal feature learning.
Using Adam leads to a notable improvement across all evaluation metrics, with the model achieving an
accuracy of 89.8% and an F1-score of 0.819. This highlights the advantage of adaptive moment estimation in
stabilizing both the generator-discriminator interplay and the temporal encoding-decoding process.
The best performance is achieved when using AdamW as the optimizer, reaching 91.3% accuracy and an F1-
score of 0.835. The weight decay decoupling strategy in AdamW further prevents overfitting by ensuring
better regularization during training, which is particularly critical for adversarial learning settings. These
results confirm that selecting an appropriate optimizer plays a significant role in enhancing the overall
effectiveness and robustness of the proposed anomaly detection framework.

5) Experiment on loss function changing with epoch

In the visualization experiment section, this paper first gives the images of the loss functions of training and
verification as the epoch changes.

Figure 4. Training and validation loss functions



The training and validation loss curves shown in Figure 4 demonstrate a stable and consistent convergence
process over the 200 training epochs. Initially, both losses start at relatively high values above 20, indicating
a large reconstruction error at the beginning of training. However, within the first 50 epochs, both curves
exhibit a sharp decline, suggesting that the model quickly captures the dominant patterns in the data and
begins to reconstruct sequences more accurately.
As the training progresses, the loss values for both training and validation continue to decrease, but at a
slower rate, eventually stabilizing around epoch 150. The gap between the two curves remains narrow
throughout the process, indicating that the model maintains a strong generalization capability and does not
suffer from overfitting. This is particularly important in anomaly detection tasks, where excessive fitting to
normal data can reduce sensitivity to subtle anomalies.
By the end of training, both training and validation losses settle near 0.1, representing a significant
improvement from the initial state. This result confirms the effectiveness of the proposed framework in
learning meaningful representations of the normal behavior and adapting well to unseen data. The smooth
convergence pattern and final loss values reflect the robustness of both the CMSF-GAN generation process
and the ATTAE anomaly detection mechanism.

6) Experiment on loss function changing with epoch

Next, this paper also gives a robustness test under different data perturbation intensities, and the
experimental results are shown in Figure 5.

Figure 5. Robustness test experimental results under different data perturbation intensities

The experimental results shown in Figure 5 illustrate the robustness of the proposed CMSF-GAN + ATTAE
framework under varying levels of data perturbation. When no perturbation is introduced, the model achieves
its highest F1-score, reflecting optimal detection capability in clean and stable input environments. As minor
perturbations are applied, such as slight noise or temporal jitter, the performance exhibits a modest decline,
but remains within an acceptable range, indicating a degree of inherent tolerance to low-level disruptions.
As the perturbation intensity increases to medium and high levels, the F1-score continues to drop, suggesting
that the model's ability to distinguish between normal and anomalous patterns becomes more challenged.
This trend highlights the difficulty of maintaining reconstruction accuracy and anomaly discrimination when
signal characteristics deviate significantly from the original distribution. The impact of high perturbation is



especially evident in temporal models like ATTAE, where even subtle sequence distortion may lead to
cumulative reconstruction errors.
Under extreme perturbation, the model performance degrades more significantly, with the F1-score falling
below 0.65. This result indicates that while the framework exhibits strong robustness in mild to moderate
disturbance scenarios, its effectiveness diminishes when exposed to severe and highly irregular input
distortions. Nevertheless, the gradual degradation pattern also demonstrates that the model degrades
gracefully rather than abruptly, which is desirable in real-world systems where unpredictable perturbations
may occur.

7) Experiment on migration capability of cross-scenario data

Finally, this paper presents an experiment on the model's migration ability on cross-scenario data.

The results illustrated in Figure 6 demonstrate how the proposed model responds to increasing levels of
transfer difficulty across different scenarios. In all three subplots—A to B, A to C, and A to D—the F1-score
shows a consistent downward trend as the difficulty of domain migration increases from Low to Extreme.
This decline reflects the expected challenge of generalizing learned representations to new environments with
differing data distributions, especially under severe distribution shifts.

Figure 6. Experiment on migration capability of cross-scenario data
Despite the decreasing trend, the performance degradation is smooth rather than abrupt, and the model
maintains relatively high F1-scores under Low and Medium transfer conditions across all scenarios. This
suggests that the combination of CMSF-GAN and ATTAE retains a level of generalizability and robustness
when faced with moderate domain shifts. The presence of the shaded confidence bands further illustrates that
while there is inherent variability in model behavior under transfer, the variance remains controlled and stable.
The gap between scenarios also highlights the relative difficulty of each transfer path, with A to D presenting
the steepest decline and lowest final score. This implies that scenario D introduces more complex or
unfamiliar patterns that challenge the model's capacity to detect anomalies reliably. Overall, the results
validate the model's capacity to handle cross-scenario adaptation while emphasizing the importance of
improving robustness under high transfer difficulty settings.

5. Conclusion
This paper proposes a novel anomaly detection framework that integrates a conditional multi-scale feature
enhanced generative adversarial network (CMSF-GAN) with an adaptive thresholding temporal autoencoder



(ATTAE). The proposed method addresses two major challenges in microservice-based distributed systems:
the scarcity of high-quality anomalous data and the difficulty of detecting subtle or complex temporal
anomalies. By combining synthetic anomaly generation with dynamic, context-aware detection, the
framework enhances both the breadth of test coverage and the precision of anomaly identification.
Extensive experiments on two representative datasets demonstrate that the proposed model outperforms a
range of state-of-the-art baselines in terms of accuracy, robustness, and generalization. In particular, the use
of GAN-generated data effectively improves the resilience of the detection model under diverse and unseen
scenarios. The model exhibits strong performance not only under clean conditions but also in the presence of
perturbations and across different domain environments, indicating its potential for deployment in real-world,
large-scale systems.
Beyond its empirical advantages, the framework also offers practical value for system reliability engineering,
security auditing, and intelligent monitoring. Its modularity and compatibility with real-time data streams
make it suitable for integration into modern DevOps pipelines and self-healing architectures. The ability to
proactively simulate and evaluate system resilience against various abnormal conditions represents a
significant step forward in the automation of infrastructure risk management and anomaly response.
Future work may focus on expanding the framework's applicability to other domains, such as industrial
control systems, cloud-native security platforms, and edge-computing environments. Additionally, further
enhancements in the generative component—such as introducing multi-modal or graph-structured anomaly
simulation — may further improve detection granularity and interpretability. The methods and insights
proposed in this paper provide a strong foundation for advancing intelligent anomaly handling in complex,
high-volume operational systems.
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