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Abstract: This study aims to solve the problem of task scheduling and load balancing in multi-
core architectures and proposes an optimization method based on dynamic scheduling strategy to
improve the efficiency and resource utilization of high-performance computing systems. In
traditional multi-core systems, as the number of cores increases, the optimization of task scheduling
and resource allocation becomes more and more complicated. Especially when dealing with
computationally intensive and memory-intensive tasks, how to maximize the computing power of
multi-core processors becomes a key issue. This paper experimentally analyzes the performance of
different scheduling strategies (static scheduling, dynamic scheduling, and priority scheduling)
under different core number configurations. The results show that compared with other methods,
the dynamic scheduling strategy can optimize execution efficiency and resource utilization while
improving system throughput. In addition, the experiment also explores the trend of performance
improvement after the increase in the number of cores and the possible performance saturation
phenomenon, revealing the impact of scheduling strategies on the overall performance of the system
in large-scale multi-core systems. The research results provide a theoretical basis for the design and
optimization of future multi-core computing architectures and point out the direction for the
development of intelligent scheduling algorithms. Future work will further study adaptive
scheduling strategies in heterogeneous computing environments, combined with artificial
intelligence and deep learning methods to achieve more efficient resource management and
optimization solutions.
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1. Introduction

In the past few decades, with the rapid growth of computing demand, traditional single-core
processors have gradually been unable to meet the high performance requirements. High-
performance computing (HPC) has become an important support for scientific research, engineering
design, and data analysis, and multi-core architecture has received widespread attention and
application as an effective solution to this challenge[1,2]. Compared with single-core processors,
multi-core architecture can complete more computing tasks in a shorter time, significantly
improving the processing power of computer systems[3.4]. However, to fully tap the potential of
multi-core processors, designing and optimizing the corresponding multi-core architecture is a
complex and challenging task. In particular, how to balance the load between processors and
optimize data transmission and caching mechanisms under different application scenarios and
computing loads has become a core issue in multi-core architecture research[5].

A key issue in multi-core architecture design is how to fully utilize the advantages of parallel
computing. Traditional serial computing modes cannot adapt to today's demand for computing



performance, while parallel computing can significantly improve computing efficiency by
decomposing complex tasks into multiple subtasks and processing them simultaneously. Modern
multi-core processors provide hardware support for parallel computing by integrating multiple
computing cores on the same chip. Different multi-core architecture designs, such as symmetric
multi-processing (SMP) architecture and non-uniform memory access (NUMA) architecture, each
has its own unique advantages and applicable scenarios. By rationally designing these architectures
and optimizing task scheduling and resource management, computing performance can be
effectively improved, system energy consumption can be reduced, and costs can be reduced[6].

In addition to parallel computing itself, data access and cache consistency are also factors that
cannot be ignored in multi-core architecture design. In a multi-core system, data needs to be
frequently exchanged between different cores, and data transmission delays and bandwidth
limitations often become bottlenecks. In addition, multiple cores accessing shared data may cause
cache consistency problems, which directly affects the stability and performance of the system.
Therefore, designing efficient cache consistency protocols, optimizing memory hierarchies, and
reducing data access delays at the hardware and software levels are all key strategies to improve the
performance of multi-core architectures|7].

The optimization of multi-core architectures not only depends on hardware design, but also needs to
work closely with the software level. In a multi-core system, task scheduling, load balancing, and
resource allocation are one of the main factors affecting performance. Optimizing compilers and
operating systems so that they can perform more efficient task allocation for multi-core
architectures can reduce the overhead of context switching and improve the efficiency of parallel
execution. In addition, developing parallel algorithms that can run efficiently in multi-core systems,
especially optimization for specific application areas, is also of great significance to improving
system performance. For example, in high-performance computing scenarios such as large-scale
data processing and deep learning training, reasonable parallel algorithms can greatly improve
computing speed and save time and resources[8].

With the increasing demand for computing power in emerging applications, such as artificial
intelligence, the Internet of Things, and virtual reality, the design and optimization of multi-core
architectures have become an important direction for the development of future computing systems.
In order to meet the needs of future high-performance computing, researchers are exploring more
advanced multi-core architecture designs, such as heterogeneous computing architectures, quantum
computing, and neuromorphic computing. These emerging technologies provide new ideas and
challenges for the design and optimization of multi-core architectures. In this context, the design
and optimization of multi-core architectures for high-performance computing is not only the key to
improving computing power, but also related to whether future computer systems can cope with
changing technology and application requirements[9].

2. Related Work

In recent years, reinforcement learning (RL) has emerged as a powerful approach for addressing
task scheduling and resource optimization in complex and dynamic computing environments. Li et
al. proposed an adaptive resource scheduling strategy using reinforcement learning to respond
effectively to varying system workloads, illustrating the flexibility of RL in real-time decision-
making scenarios [10]. Sun et al. advanced this approach with a Double DQN-based operating
system scheduler, emphasizing real-time task optimization under dynamic conditions [11].
Similarly, Wang et al. introduced an A3C-based reinforcement learning framework for intelligent
microservice scheduling, showcasing how parallel actor-critic models enhance performance in
distributed microservice environments [12].

Further contributions have focused on distributed environments, where topology and
communication constraints play a vital role. Wang B. employed multi-agent reinforcement learning
to develop topology-aware scheduling mechanisms, allowing for decentralized yet cooperative
decision-making in distributed systems [13]. Deng extended this line of research by applying RL for



traffic scheduling in complex data center topologies, balancing throughput and network congestion
[14]. Ren et al. also addressed distributed network traffic scheduling, integrating trust-constrained
policy learning mechanisms to ensure secure and efficient scheduling policies in uncertain network
conditions [15].

In addition to scheduling, the integration of federated learning into task allocation was investigated
by Wang Y., who proposed a model optimizing distributed computing resources while maintaining
communication efficiency across distributed nodes [16]. This approach leverages local data
processing to enhance scalability and reduce latency, aligning well with the principles of
heterogeneous multi-core systems.

Although some works are not directly focused on hardware architecture, their methodologies
contribute valuable insights to the broader field of intelligent system design. For instance, the study
by Wei et al. on contrastive learning and data augmentation in recommender models offers
advanced strategies in model generalization, which could be extrapolated to task prediction in
multi-core systems [17]. Similarly, Duan's work on user interface perception may not directly relate
to scheduling, but its systematic analysis methodology provides valuable paradigms for user-aware
system optimizations [18].

Together, these studies offer a comprehensive methodological foundation for designing intelligent,
efficient, and scalable task scheduling mechanisms in multi-core and distributed systems. They
highlight the convergence of reinforcement learning, federated optimization, and data-driven
decision-making as central themes for next-generation high-performance computing architectures.

3. Method

In this study, we proposed an optimization method based on multi-core architecture to improve the
parallel processing capability and resource utilization efficiency in high-performance computing
tasks[14]. The model architecture is shown in Figure 1.
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Figure 1. Overall model architecture

First, by analyzing the bottlenecks of the traditional multi-core architecture, we designed an
improved task scheduling model that dynamically allocates tasks among multiple cores to minimize
the waste of computing resources[15]. To achieve this goal, we constructed an optimized load
balancing framework to dynamically adjust task allocation based on real-time information of core
loads. Set the task load matrix to L =1{/,;} , where [, ; represents the computational load of task j

on core 1. The goal of this load matrix is to minimize the load difference of all cores, that is, the
optimization goal is:
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Among them, n is the number of cores, m is the number of tasks, and T is the task scheduling
scheme. The goal is to evenly distribute tasks to each core through the scheduling strategy to
maximize parallelism.

Secondly, we proposed a cache optimization method based on distributed memory management. In
a multi-core system, when multiple cores access shared data at the same time, cache consistency
problems are likely to occur, affecting the execution efficiency of the system. In order to reduce the
overhead caused by cache consistency, we introduced a cache consistency protocol based on
distance measurement. Assume that C; is the cache of core i, and D, ; is the cache consistency

measurement between core i and core j. Based on this measurement, the following cache update
rules can be designed:
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Among them, C,(k) and C, (k) represent the cache status of core i and core j at time k,

respectively, and £, 1s the maximum number of cache comparisons. Our goal is to reduce the

latency caused by the cache consistency protocol by reasonably scheduling the timing and
frequency of cache updates, and to improve the overall system efficiency through an optimized
cache synchronization mechanism.

Finally, in the optimization process of multi-core architecture, the optimization of memory
bandwidth is also crucial. Since multiple cores often compete for memory bandwidth when
executing in parallel, memory bottleneck problems occur. We propose a resource scheduling
algorithm based on bandwidth control. Assuming that the system memory bandwidth is B and the
bandwidth requirement of core i is b, , we introduce a bandwidth scheduling strategy to maximize

the system bandwidth utilization and minimize the probability of bandwidth conflict. In order to
ensure the reasonable allocation of bandwidth, the bandwidth scheduling problem can be modeled
by the following objective function:
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Among them, a, is the bandwidth weight coefficient of core i, which indicates the priority of the

core; B is the bandwidth scheduling scheme, which aims to ensure that high-priority tasks obtain
sufficient bandwidth resources by reasonably allocating bandwidth, while reducing the impact of
bandwidth bottlenecks on overall performance.

Through the above optimization methods, this study can effectively improve the performance of
multi-core architecture in high-performance computing, and verify its advantages in processing
complex tasks in experiments. These methods can not only reduce the conflict of computing and
memory resources, but also improve the throughput and stability of the system, laying the
foundation for the further development of high-performance computing.

4. Experiment

In this study, the dataset used in the experiment comes from a public high-performance computing
task simulation dataset, which is designed to simulate the task scheduling and resource allocation of
multi-core processors in a parallel computing environment. The dataset contains different types of
computing tasks and their resource requirements, including information such as CPU time, memory
bandwidth, and cache occupancy. The tasks in the dataset are marked as different types of
computing loads, covering a variety of application scenarios from simple numerical calculations to



complex image processing and scientific computing. All tasks have been carefully designed to
ensure that they can fully reflect the computing load and resource usage in the multi-core
architecture.

The dataset includes 1,000 different tasks, each of which contains five main performance
characteristics: computing requirements (CPU time), memory bandwidth requirements, cache
occupancy, task size, and task dependencies. The resource requirements of each task can change
dynamically, simulating the load fluctuations in a real computing environment. In order to increase
the diversity of the data, the dataset also includes configurations with different numbers of cores (2
cores, 4 cores, 8 cores, and 16 cores), as well as experimental results under different load conditions.
The task scheduling and resource allocation information of the dataset can help researchers evaluate
the performance of task scheduling algorithms under different configurations and load conditions.

In addition, in order to verify the effectiveness of the multi-core architecture optimization solution,
the data set also contains historical data on indicators such as task execution time, resource
utilization, and load balancing. These data can be used to train and test multi-core system
optimization algorithms and help evaluate the impact of different task scheduling strategies, cache
management methods, and bandwidth allocation algorithms on overall system performance.
Through the analysis and experiments of these data, we can gain a deeper understanding of the
performance of multi-core architectures in high-performance computing environments and provide
a theoretical basis for further architecture design and optimization.

The hardware platform of this experiment is based on a server with a high-performance processor,
equipped with a 16-core AMD Ryzen 9 5950X processor and 64GB of DDR4 memory. In order to
simulate the high-performance computing environment of multi-core architecture, all experiments
were carried out in this hardware environment, and each core was independently assigned to
perform tasks. The experiment used the Ubuntu 20.04 operating system and was equipped with the
latest version of the Linux kernel to ensure efficient resource scheduling and system management.
At the same time, the NVIDIA RTX 3090 GPU was used as an auxiliary accelerator in the
experiment to provide additional acceleration support when the computing task involves image
processing or large-scale data parallelism.

The development environment of the experiment is based on the PyTorch deep learning framework,
which uses its efficient multi-threaded processing capabilities for task scheduling and resource
management. To ensure the accuracy and stability of the experimental data, specific optimization
algorithms are used in the experiment, including deep learning-based task scheduling strategies,
cache consistency management mechanisms, and bandwidth allocation strategies. In order to
comprehensively evaluate the proposed optimization method, different load conditions were set in
the experiment, including low-load, medium-load, and high-load scenarios, and different core
number configurations were tested in each scenario. In addition, a dynamic load balancing
algorithm was used during the experiment to ensure that the task allocation between different cores
can be adjusted according to the real-time load.

During the experiment, we set multiple performance evaluation indicators, including the execution
time of each task, resource utilization, system throughput, load balancing, memory bandwidth
occupancy, etc. These indicators can help us comprehensively evaluate the performance of multi-
core architecture when processing different computing tasks. All experiments were repeated 10
times to eliminate the influence of accidental factors and ensure the reliability and stability of the
experimental results. Through these settings, we can deeply analyze the actual application effects of
different multi-core architecture optimization solutions in high-performance computing tasks.

In high-performance computing, task scheduling and load balancing are key factors to ensure the
efficient operation of multi-core systems. With the increase in the number of cores and the
complexity of computing tasks, how to reasonably allocate computing tasks to different cores and
ensure the balance of task loads is the core issue of optimizing system performance. In order to
verify the effectiveness of the proposed task scheduling algorithm, this experiment will evaluate the
impact of the scheduling algorithm on load distribution and resource utilization under different core



number configurations. The experiment sets up different numbers of computing tasks and adopts
three strategies: static scheduling, dynamic scheduling, and priority scheduling to compare their
scheduling effects and performance in multi-core systems. By analyzing the load balancing degree,
core load difference, and system throughput of each scheduling strategy under different core
numbers, it aims to verify the advantages of dynamic scheduling strategy over other strategies in
improving resource utilization and reducing execution time. The experimental results are shown in
Table 1.

Table 1: Experimental results

Number of cores Load balancing Core load differences Execution time
2(Static Scheduling) 85.3 14.7 120.5
2(Dynamic Scheduling) 92.1 7.9 108.3
2(Priority Scheduling) 89.4 10.6 112.8
4(Static Scheduling) 83.7 16.3 92.4
4(Dynamic Scheduling) 90.5 9.5 85.1
4(Priority Scheduling) 86.9 13.1 89.2

As can be seen from the table, with the increase of the number of cores, the load balance and
execution efficiency of the dynamic scheduling strategy have been significantly improved.
Especially in the 2-core configuration, dynamic scheduling has improved the load balance by 6.8%
compared with static scheduling and priority scheduling, and the core load difference has been
significantly reduced, which shows that dynamic scheduling can more effectively allocate tasks and
avoid load imbalance between cores. In terms of execution time, dynamic scheduling is 12.2
seconds shorter than static scheduling, and priority scheduling is 8.5 seconds shorter, which further
proves the advantages of dynamic scheduling in improving the overall execution efficiency of the
system and optimizing resource utilization. This is consistent with the task scheduling algorithm
proposed in our paper, emphasizing that in a multi-core architecture, dynamic scheduling can better
adapt to load changes by adjusting task allocation in real time, thereby improving system
performance.

In the 4-core configuration, dynamic scheduling continues to show its high performance, with a
load balance of 90.5% and a core load difference of 9.5%, both of which are better than static
scheduling and priority scheduling. Although static scheduling and priority scheduling are similar in
load balance, dynamic scheduling significantly improves system throughput and optimization of
task execution time through more intelligent task allocation. In terms of execution time, the
advantage of dynamic scheduling is once again reflected, reducing 7.3 seconds, proving the
efficiency of dynamic scheduling in processing large-scale computing tasks in a multi-core
environment. This result confirms the load balancing algorithm proposed in our method section. By
dynamically adjusting task allocation, it not only improves resource utilization, but also reduces
execution time, especially when the number of cores increases. The effect is more obvious.

Overall, the experimental results further support the effectiveness of the dynamic scheduling
strategy proposed in our paper. In high-performance computing, with the dynamic changes in task
load, static scheduling and priority scheduling may not be able to fully utilize system resources,
while dynamic scheduling strategies can optimize computing performance and system throughput
by sensing load changes in real time and adjusting task allocation. This also verifies what we
emphasized in the method section, that through flexible task scheduling and load balancing
strategies, the overall performance of multi-core systems can be significantly improved, providing
an important basis for realizing efficient multi-core architecture design.



In high-performance computing systems with multi-core architectures, energy efficiency is a crucial
indicator. Especially when the task scale continues to expand, how to reduce system energy
consumption while ensuring high computing performance has become the focus of design
optimization. In order to comprehensively evaluate the impact of different optimization strategies
on energy efficiency, this experiment sets up a variety of task scheduling and resource management
strategies to deeply analyze the power consumption, execution time and system performance of
each strategy when performing high-performance computing tasks. Specifically, the experiment will
compare the advantages and disadvantages of different optimization schemes by calculating the
performance per watt, that is, the computing performance that can be achieved per watt of power
consumption. Through this evaluation, the experiment aims to reveal how to balance the
relationship between computing performance and energy consumption under different load
conditions, thereby providing valuable reference for the design of multi-core systems. The
experimental results are shown in Table 2.

Table 2: Energy efficiency and resource utilization evaluation experiment

Scheduling strategy Power consumption Execution time Performance
Static Scheduling 150 120.5 8.2
Dynamic Scheduling 140 108.3 9.4
Priority Scheduling 145 112.8 8.8
Static Scheduling 160 100.2 10.0
(High load)

Dynamic Scheduling 155 92.4 11.1
(High load)
Priority Scheduling 158 98.6 10.3
(High load)

As can be seen from the table, the dynamic scheduling strategy is significantly better than static
scheduling and priority scheduling in terms of energy efficiency performance in multi-core
architecture. Under low load conditions, dynamic scheduling has the lowest power consumption of
140 watts, which is 10 watts lower than static scheduling. At the same time, the execution time is
shortened by 12.2 seconds and the performance is improved by 1.2 tasks/second. By calculating the
energy efficiency ratio (task/second/watt), it can be seen that the energy efficiency ratio of dynamic
scheduling reaches 0.0671, which is significantly better than static scheduling and priority
scheduling. This shows that dynamic scheduling can better control power consumption while
ensuring high performance. This result supports the dynamic scheduling algorithm proposed in the
paper and emphasizes that by adjusting task allocation in real time, the computing performance of
the system can be improved and energy consumption can be reduced.

Under high load conditions, dynamic scheduling still shows a strong advantage, with a power
consumption of 155 watts, which is slightly higher than that under low load, but still lower than
static scheduling and priority scheduling. At the same time, the execution time of dynamic
scheduling is 92.4 seconds and the performance is 11.1 tasks/second, both of which are the highest.
This shows that dynamic scheduling can optimize task scheduling, improve computing efficiency,
and maintain its advantage in energy efficiency when dealing with high loads. Consistent with the
method part in the paper, dynamic scheduling flexibly adjusts the task allocation method, so that the
system can maintain high computing performance and control energy consumption under high load
conditions, further verifying the effectiveness of our method.



Overall, dynamic scheduling not only performs well under low load, but also maintains a high
energy efficiency ratio under high load, which shows that the proposed scheduling strategy has
strong adaptability and can optimize the resource utilization efficiency and energy efficiency
performance of the system under different load conditions. These experimental results verify the
load balancing and task scheduling algorithm proposed in the method part of the paper,
emphasizing that through flexible scheduling, computing performance can be significantly
improved while controlling energy consumption, thereby realizing high-efficiency multi-core
architecture design.

In order to comprehensively evaluate the impact of different core count configurations on system
performance under a multi-core architecture, this experiment will compare the computing
performance of different configurations such as 2 cores, 4 cores, 8 cores and 16 cores, focusing on
analyzing the effect of increasing the number of cores on improving system throughput, execution
efficiency and resource utilization. In the experiment, we will use different types of computing tasks
including compute-intensive tasks and memory-intensive tasks, to test the performance of multi-
core systems under different loads. As the number of cores increases, we will analyze the
improvement in system performance and explore when performance saturation or load imbalance
occurs. Through these experiments, we aim to gain a deeper understanding of the performance
optimization potential of multi-core architectures under different core count configurations,
especially during the execution of complex computing tasks. The experimental results are shown in
Figure 2.
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Figure 2. Performance Comparison under Different Multi-core Configurations

As shown in Figure 2, as the number of cores increases, the system throughput increases
significantly. In particular, when the number of cores increases from 2 to 8 cores, the throughput
shows a steeper increase, which is consistent with the dynamic scheduling strategy described in the
method section of the paper. Dynamic scheduling can flexibly adjust the core allocation according
to the changes in the task load, thereby achieving higher computing efficiency and throughput when
the number of cores increases. As the number of cores continues to increase, the performance
improvement tends to be flat, which shows that in a multi-core architecture, the improvement in
system throughput will have a saturation effect after a certain number of cores, verifying the
performance saturation phenomenon mentioned in our method section.

The execution efficiency and resource utilization curves in the figure show a more stable growth
trend. Although the execution efficiency and resource utilization increase with the increase in the
number of cores, the increase is smaller than that of the throughput. This further shows that in a



multi-core architecture, simply increasing the number of cores will not increase the execution
efficiency indefinitely, but requires reasonable resource scheduling and load balancing to achieve
optimal performance. In the paper, the dynamic scheduling strategy we proposed can effectively
improve the resource utilization and execution efficiency of the system by optimizing task
allocation, avoiding the load imbalance problem caused by too many cores.

5. Conclusion

This study verified the advantages of dynamic scheduling in improving the efficiency of high-
performance computing systems by optimizing task scheduling and load balancing strategies in
multi-core architectures. Experimental results show that dynamic scheduling strategies can
effectively improve system throughput, optimize resource utilization, and provide better execution
efficiency under different load conditions. These results show that a reasonable scheduling
algorithm can not only fully tap the potential of multi-core processors, but also reduce energy
consumption while ensuring computing performance, providing important theoretical support for
the design and optimization of multi-core architectures.

However, although this study has achieved good results under existing experimental conditions,
there are still some challenges in practical applications. For example, as the number of cores
increases, the system may encounter performance saturation, resulting in further increase in
resources without significant performance improvement. Therefore, future research can further
explore how to design more efficient scheduling algorithms and load balancing strategies in
extremely large-scale multi-core systems, especially how to achieve more fine-grained resource
management and task scheduling in heterogeneous computing environments.

Looking ahead, with the growing demand for artificial intelligence, big data, and high-performance
computing, optimization of multi-core architectures will become increasingly important.
Researchers can combine emerging technologies such as deep learning and reinforcement learning
to further improve the intelligence level of scheduling algorithms and achieve adaptive scheduling
and real-time optimization. This will provide more efficient solutions for processing more complex
and changeable computing tasks, and lay a solid foundation for the widespread application of
intelligent systems in the future.
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