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Abstract: This paper proposes a classification-based data mining algorithm that integrates a feature
enhancement mechanism with Capsule Networks. The method is designed to address the limitations of
feature representation and spatial modeling in structured data classification tasks. First, an attention-driven
feature enhancement module is introduced. It performs saliency-based weighting on the original inputs to
strengthen the representation of key dimensions. Then, a Capsule Network is employed to model the
enhanced feature vectors in a vectorized manner. A dynamic routing mechanism is used to effectively
capture hierarchical structures and semantic relationships. Based on this, a classifier is constructed using
margin loss as the objective function. This improves the model's ability to distinguish boundary samples.
The UCI Adult dataset is used in the experiments to validate the proposed approach. Model performance is
evaluated under various conditions, including different training ratios, noise levels, and routing iterations.
The results show that the proposed method outperforms several baseline models in terms of accuracy, F1-
score, and robustness. It demonstrates significant performance advantages.

Keywords: Capsule networks, feature enhancement, dynamic routing, structured classification.

1. Introduction
With the rapid development of information technology, the explosive growth of data has become a defining
feature of the information age. Massive volumes of data provide unprecedented resources for various
industries and have driven a growing demand for data mining technologies. Especially in typical application
domains such as finance, healthcare, e-commerce, and education, extracting hidden patterns from large-scale
structured or semi-structured data to improve decision-making efficiency and intelligence has become a key
research focus. In data mining tasks, classification algorithms are both fundamental and crucial [1, 2]. Their
accuracy and generalization ability directly determine the overall system performance. However, traditional
classification models still face challenges in handling complex, high-dimensional, and non-linear data
distributions. These include insufficient feature extraction, incomplete information representation, and weak
modeling of spatial relationships between samples. Such limitations significantly constrain their real-world
applicability. Therefore, it is urgent to develop classification-based data mining algorithms with stronger
representational capacity to better capture the intrinsic structure and semantic relationships within data.
In recent years, deep learning has achieved remarkable results in fields such as image recognition, speech
recognition, and natural language processing. It is now being increasingly applied to structured data mining.
Convolutional Neural Networks (CNNs), in particular, have demonstrated strong capabilities in extracting
local features. However, CNNs inherently struggle to model spatial hierarchies. To address this issue,
Capsule Networks have emerged as a novel neural architecture. By using vector-based feature representation
and introducing a dynamic routing mechanism, they can model hierarchical dependencies while preserving



positional sensitivity. Theoretically, Capsule Networks are better suited to capture complex spatial structures
and semantic compositions within samples, offering stronger generalization than traditional CNNs.
Nevertheless, they also face challenges such as inefficient training and high sensitivity to input features. How
to leverage their strengths while overcoming these limitations remains an important research direction [3].
In data mining tasks, the quality of feature engineering largely determines the performance of classification
models. Feature enhancement, as a strategy to improve feature expressiveness, has shown effectiveness
across many tasks. By incorporating techniques such as attention mechanisms, multi-scale modeling, and
feature reconstruction, feature enhancement can emphasize important features and suppress redundant
information. This leads to more discriminative inputs for subsequent classifiers. Especially in scenarios
involving high-dimensional data or numerous weakly relevant features, a well-designed feature enhancement
mechanism can improve model robustness and effectively mitigate the "curse of dimensionality." Therefore,
integrating feature enhancement with novel neural architectures has become a key breakthrough for
improving data mining outcomes [4].
This study aims to explore how to combine the hierarchical modeling capabilities of Capsule Networks with
the expressive power of feature enhancement mechanisms. We propose a novel classification-based data
mining algorithm. By incorporating an adaptive feature enhancement module into the Capsule Network
architecture, the model is expected to achieve better representation of high-dimensional feature spaces and
improved sensitivity to critical features, thereby enhancing overall classification performance. This approach
is expected to better capture deep associations between features in complex structured data, improve
generalization and discrimination, and be applicable to real-world scenarios such as financial risk assessment,
medical diagnosis support, and public opinion monitoring. Meanwhile, the study will also investigate the co-
design strategy of feature enhancement and dynamic routing to improve adaptability across different tasks
and data distributions [5].
In conclusion, under the growing prevalence of data-driven decision-making, traditional classification models
can no longer meet the increasing demands for accuracy, robustness, and interpretability. Building an
integrated classification model based on the structural advantages of Capsule Networks and the semantic
enhancement capabilities of feature enhancement mechanisms has both significant theoretical value and
broad application prospects. This research is expected to make breakthroughs in classification accuracy,
model generalization, and interpretability. It will provide solid technical support for intelligent decision-
making systems and offer new insights into the design and implementation of next-generation data mining
methods.

2. Related work
In recent years, classification-based data mining algorithms have evolved toward deeper modeling for
structured and semi-structured data. Traditional methods such as Support Vector Machines (SVM), Random
Forests (RF), and Logistic Regression perform well on small-scale datasets. However, they often struggle
with high-dimensional, nonlinear, and multimodal feature distributions. These methods generally show weak
feature extraction and limited generalization. To address this, researchers have introduced deep neural
networks into structured data mining. These networks replace handcrafted feature construction with end-to-
end feature learning. Fully connected deep networks, in particular, can fit complex data distributions by
stacking nonlinear transformations. Still, such models lack the ability to capture spatial dependencies and
hierarchical relationships among features, which limits their performance in tasks requiring rich semantics [6].
To overcome the limitations of traditional network structures in modeling complex relationships, Sabour et al.
proposed the Capsule Network [7]. This architecture replaces scalar neurons with vector capsules and
introduces a dynamic routing mechanism. It enables the network to model spatial hierarchies and part-whole
relationships more effectively. In image recognition, Capsule Networks have shown greater robustness to
transformations like rotation and translation. Some studies have extended their application to text analysis,
speech recognition, and classification of structured data. However, Capsule Networks still face challenges in



efficiency and convergence due to high computational cost and instability in routing [8-10]. As a result,
optimizing and extending Capsule Network structures has become a key research direction. One promising
approach is to enhance capsule inputs through external mechanisms that extract more discriminative features.
Feature enhancement mechanisms have emerged as an important area in deep model optimization [11]. They
are widely used in computer vision and natural language processing and have demonstrated notable
performance improvements. Attention mechanisms [12], for example, assign adaptive weights to strengthen
key information. This allows models to focus on the most task-relevant features. Other strategies, such as
multi-scale feature fusion, feature reconstruction, and perturbation-based contrastive methods, further enrich
the toolkit for feature enhancement. Some recent studies have integrated enhancement mechanisms with
backbone networks like CNNs or Transformers. However, how to efficiently incorporate such mechanisms
within the Capsule Network framework remains largely unexplored. Integrating feature enhancement into
Capsule Networks could improve feature representation. It also offers more precise context modeling and
semantic linkage for classification tasks. This direction holds significant research value.

3. Method
The classification data mining algorithm proposed in this paper combines the hierarchical modeling
capabilities of capsule networks and the discriminative enhancement characteristics of feature enhancement
mechanisms, aiming to improve the expressiveness and generalization capabilities in high-dimensional
structured data classification tasks. Its model architecture is shown in Figure 1.

Figure 1. Overall model architecture

As shown in Figure 1, the model architecture proposed in this paper mainly includes two core parts: feature
enhancement module and capsule network. First, the original high-dimensional structured data is input into
the feature enhancement module, which uses attention mechanism and other technologies to enhance key
information and generate feature representations with stronger discriminability. Subsequently, the enhanced
features are input into the capsule network, which contains the main capsule layer and the advanced capsule
layer, and the hierarchical modeling of features and the capture of spatial structural relationships are achieved
through the dynamic routing mechanism. Finally, the classifier makes decisions based on the output of the
advanced capsule to achieve high-precision recognition of complex patterns. This architecture effectively
combines feature expression capabilities and spatial modeling capabilities, improving the overall
performance of classification data mining tasks.



First, the input original feature vector is denoted as dnRX  , where n represents the number of samples and
d represents the feature dimension of each sample. In order to enhance the discriminability of the features, a
multi-channel feature enhancement module is introduced to perform preliminary processing on the original
features. This module is based on the attention mechanism and realizes weighted reconstruction of features
by learning the importance weights of different dimensions in the samples. Specifically, the weight vector can
be expressed as:
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1W , 2W is a trainable parameter, h is a hidden dimension, and  is a sigmoid function. The final
enhanced features are:
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Where  represents element-by-element multiplication. This enhancement process significantly improves
the model's ability to focus on key dimensional features.

Subsequently, the enhanced features are input into the capsule network for higher-level modeling. The
capsule unit no longer uses scalar neurons, but uses vectors to represent low-level entity features. The
architecture diagram of the capsule network is shown in Figure 2.

Figure 2. Capsule Network Architecture

Assume that each layer of low-level capsules is p
i Ru  , where p is the dimension of the capsule vector.

Through a learnable weight matrix ijW , the low-level capsule is projected into the high-level capsule space to
obtain the prediction vector iju |' :

iijij uWu |

On this basis, a dynamic routing mechanism is used to perform a weighted combination of the projection
results of different low-level capsules to form the output js of the high-level capsule:
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Where ijc is the normalized weight calculated by softmax of routing coefficient ijb , that is:
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The routing coefficient ijb is updated in each iteration according to the similarity between the predicted
vector and the current output vector to ensure a higher quality combination structure.
In order to improve the robustness of the final classification, this paper introduces margin loss as the
objective function for training based on capsule output. For each category k, its capsule output is kv , and its
existence probability is expressed as |||| kv . Assuming the true label is }1,0{kT , the margin loss is defined
as:
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Where m and m are the threshold boundaries of positive and negative samples, respectively, and  is
the weight coefficient for suppressing the loss of negative samples. The final loss function is the sum of all
category losses:
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This loss design can effectively enhance the classifier's sensitivity to boundary samples, thereby improving
the overall model accuracy.
In summary, this paper constructs a new classification framework that integrates feature enhancement and
capsule modeling. The feature enhancement module improves the discriminability of input data, and the
capsule network extracts spatial semantic relationships, and finally realizes multi-granular feature
aggregation through a dynamic routing mechanism. While maintaining the model's expressiveness, this
method improves the ability to identify key features and model complex structures, providing a more robust
and efficient solution for the intelligent classification of high-dimensional data.

4. Experiment
4.1 Datasets
The experimental dataset used in this study is the UCI Adult Income Dataset. This dataset is provided by the
U.S. Census Bureau and is one of the most widely used benchmark datasets for structured data classification
tasks. The objective is to predict whether an individual's annual income exceeds $50,000 based on
demographic attributes. It is a typical binary classification problem. The dataset consists of 32,561 training
samples and 16,281 test samples extracted from the 1994 U.S. Census.
Each sample contains 14 attribute features, including age, occupation, education level, marital status, working
hours, and nationality. These features cover both continuous and categorical data. The data is highly
structured and diverse, making it suitable for evaluating the performance of feature enhancement mechanisms
and classification models on high-dimensional heterogeneous data. To facilitate model training, all
categorical variables are encoded using one-hot encoding. Continuous features are normalized to the [0,1]
range to improve training efficiency and model stability.
The dataset's wide applicability and standardized splits make it an ideal platform for validating classification
models. Experiments on this dataset allow a comprehensive evaluation of the proposed algorithm's
generalization and discriminative capabilities when handling complex structured data. It also enables fair
comparisons with existing mainstream classification models, thereby demonstrating the effectiveness and
advancement of the proposed method.



4.2 Experimental Results

First, this paper presents a performance comparison experiment of different classification models on the
UCI Adult dataset. The experimental results are shown in Table 1.
The experimental results show that the proposed model (Ours) achieves the best performance on the UCI
Adult dataset, a structured classification task. Specifically, our model reaches an accuracy (ACC) of 89.12%,
which is approximately 1.44 percentage points higher than the current best-performing SAINT model. This
indicates a superior overall classification accuracy. In terms of precision and recall, our method achieves
87.93% and 85.10%, respectively. These results outperform other advanced models, demonstrating that the
proposed method not only identifies positive samples more accurately but also provides stronger coverage. It
shows greater robustness when dealing with borderline samples.

Table 1: Performance comparison experiment of different classification models on UCI Adult dataset

Model ACC Precision Recall
TabNet[13] 86.47 84.22 81.35
FT-Transformer[14] 87.03 85.11 82.44
DNF-Net[15] 85.89 83.52 80.91
SAINT 87.68 86.02 83.75
Ours 89.12 87.93 85.10

In contrast, although models like FT-Transformer and SAINT exhibit strong modeling capabilities for
structured data, they still have limitations in modeling spatial relationships and feature interactions. Our
model addresses these issues by introducing a feature enhancement mechanism, which improves the
discriminative power of feature representations. Meanwhile, the use of vector-based capsules and a dynamic
routing mechanism enables the modeling of hierarchical dependencies among features. This integration
provides clear advantages in capturing complex semantic relationships within the data.
Overall, the proposed FE-CapsNet model surpasses mainstream architectures in terms of performance metrics
and introduces a novel paradigm with both theoretical and practical value for structured data mining. The
experimental results validate the effectiveness of combining feature enhancement with spatial structure
modeling in classification tasks. They also confirm the potential of Capsule Networks for handling high-
dimensional structured data. This study offers valuable insights for designing intelligent classification
systems in complex real-world environments.
Furthermore, this paper presents the experimental results of studying the impact of the number of iterations of
the dynamic routing mechanism on the classification accuracy, and the experimental results are shown in
Figure 3.
As shown in the results of Figure 3, the number of iterations in the dynamic routing mechanism significantly
affects the model's classification accuracy. When the number of iterations increases from 1 to 4, the accuracy
steadily improves, rising from 85.02% to 89.12%. This upward trend indicates that, in the early stages, more
iterations can effectively enhance communication between capsules in the network. As a result, the
information aggregation process becomes more complete, which boosts the model's discriminative power.
The iteration mechanism helps high-level capsules better capture the spatial structures and semantic patterns
expressed by lower-level features.
However, when the number of iterations exceeds 4, the accuracy begins to decline. The model reaches
88.65% at the fifth iteration and drops to 87.14% at the sixth. This suggests that excessive iterations may lead
to overfitting or redundant information, causing misleading adjustments during high-level feature aggregation.



In structured data scenarios, the spatial structure between samples is not as rich as in images or speech. Too
many routing updates may cause the model to deviate from the main discriminative direction, leading to
performance degradation. Therefore, controlling the number of dynamic routing iterations is crucial for
maintaining optimal model performance.

Figure 3. Effect of Dynamic Routing Iterations on Classification Accuracy
In summary, the experimental results confirm the effectiveness of dynamic routing in improving the
performance of Capsule Networks. At the same time, they highlight the importance of parameter tuning. In
this study, four iterations achieve the best balance between sufficient information aggregation and
computational efficiency. This setting improves model performance while avoiding unnecessary
computational cost. The finding provides guidance for future optimization of capsule structures and shows
that routing strategies in structured data mining must be carefully adapted to the characteristics of the data.
Furthermore, this paper gives an experimental line chart of "Evaluation of model generalization performance
under different data partitioning ratios", and the actual results are shown in Figure 4.

Figure 4.Model Generalization under Different Train/Test Splits



As shown in the experimental results in Figure 4, the model's classification performance improves steadily as
the training set ratio increases from 50% to 80%. Both accuracy and F1-score show clear gains. Accuracy
rises from 85.21% to 89.12%, while the F1-score increases from 82.70% to 86.50%. This indicates that with
a larger training set, the model can learn more discriminative features and achieve better generalization.
Notably, when 80% of the data is used for training, the model reaches peak performance. This demonstrates
its strong learning and abstraction capabilities when supported by sufficient training samples.
However, when the training ratio further increases to 90%, model performance slightly declines. Accuracy
drops to 88.43%, and the F1-score falls to 85.71%. This trend suggests that while increasing training data
generally enhances model performance, overly reducing the test set can hurt evaluation stability. In structured
data scenarios, insufficient test set diversity may introduce bias into performance estimates. Moreover, larger
training sets lead to longer training time and higher computational costs. Therefore, in real-world deployment,
the trade-off between performance gain and resource consumption must be carefully considered. Overall, the
experimental results highlight the critical role of data split ratio in determining model generalization. A well-
balanced ratio ensures enough training data while maintaining test set representativeness. This balance is key
to achieving both high performance and reliable evaluation. Based on our findings, using around 80% of the
data for training is recommended in structured classification tasks. This setting provides the best trade-off
between performance and stability and offers practical insights for adapting models to different data volume
conditions.
Next, the robustness test of the model under different noise interferences is given, and the experimental
results are shown in Figure 5.

Figure 5. Robustness Test under Different Noise Levels
As shown in the results of Figure 4, the classification accuracy of the model drops significantly as the noise
level increases, indicating a certain degree of sensitivity. In the noise-free setting (0%), the accuracy remains
above 89% with minimal fluctuation. This suggests that the model performs with high stability and precision
under ideal data conditions. When the noise level increases to 10% and 20%, the accuracy decreases to 87.4%
and 85.8%, respectively. However, the overall distribution remains concentrated, showing that the model
maintains strong robustness and performs well under moderate interference.
When the noise further increases to 30% and 40%, the accuracy drops sharply to 83.9% and 81.7%. The box
plot boundaries widen and outliers appear, indicating increased performance volatility under high noise levels.
This fluctuation reveals that the model is approaching its noise tolerance limit. Once the disturbance exceeds
a certain threshold, the model's ability to capture true signals weakens, leading to reduced classification
accuracy. Notably, at the 40% noise level, the lower bound of accuracy falls below 81%, showing that the
model lacks stability under extreme interference.



Overall, the experiment effectively validates the robustness of the proposed model under various noise
conditions. In low to moderate-noise scenarios, the model maintains strong performance, demonstrating the
joint advantage of feature enhancement and capsule structures in fault-tolerant feature representation and
spatial relationship modeling. However, under high noise levels, there is still room for improvement. Future
work could introduce robust training techniques or noise-aware enhancement strategies to improve
generalization and fault tolerance in complex real-world environments. This experiment also provides a
reference for further algorithm improvements under multi-noise conditions.
Finally, the experimental results of the loss function drop graph are given, as shown in Figure 6.
As shown by the Loss curves in Figure 6, the model demonstrates good convergence and stability during
training. In the initial phase (the first 20 epochs), both the training loss and validation loss drop rapidly. This
indicates that the model can quickly capture core patterns in the data and perform effective fitting. As training
continues, both curves gradually converge, and the rate of decline slows down. This reflects a stable learning
process. Throughout training, the trends of training and validation loss remain consistent, with no significant
divergence. This suggests that the model does not suffer from obvious overfitting.

Figure 6. Loss function drop graph
From the mid-to-late stages (around epoch 100 onward), both curves approach low values, with losses
staying below 0.1. The validation loss shows minimal fluctuations, further proving the model's strong
generalization ability. This steady convergence trend confirms the structural rationality of the proposed
model in both feature representation and parameter optimization. Notably, the introduction of the feature
enhancement module and capsule structure improves representation capability without causing instability or
convergence issues during training. Although slight fluctuations appear in the validation loss curve, no
persistent upward trend is observed, indicating the model's robustness in handling complex structured data.
Overall, the loss curves clearly illustrate the model's complete learning process, from early-stage fitting to
final convergence. This demonstrates that the training strategy is well-designed and the hyperparameters are
properly configured. The model exhibits high learning efficiency and effective error control. These findings
provide a solid foundation for further applications, such as transfer learning or cross-domain generalization in
more complex scenarios. Additionally, the smooth and stable training process supports the model's
controllability and interpretability in practical system deployment, showing strong engineering value.



5. Conclusion
This paper addresses performance bottlenecks in classification-based data mining by proposing a novel
model structure that integrates Capsule Networks with a feature enhancement mechanism. The method
introduces an attention-based feature enhancement module to improve the discriminative representation of
original input features. Combined with the powerful spatial relationship modeling capability of Capsule
Networks, it enables efficient extraction of complex feature interactions and hierarchical semantics in
structured data. Multiple comparative experiments and visualization analyses confirm that the proposed
method outperforms mainstream classification models in terms of accuracy, robustness, and generalization. It
demonstrates strong overall performance. The experimental results show a clear synergy between the feature
enhancement module and the capsule structure. The former strengthens key dimension information, while the
latter performs multi-granular feature fusion through vectorized representation and dynamic routing.
Evaluations on structured datasets such as UCI Adult reveal that the model maintains stable and excellent
classification performance even in high-dimensional, complex, and noisy data environments. Under different
conditions — including training data proportions, routing iterations, and noise intensities — the model
consistently shows strong robustness and adaptability. This further validates the rationality and versatility of
its design.
Moreover, convergence analysis during training indicates that the model achieves high learning efficiency
and maintains stability in later stages. No overfitting or performance fluctuations are observed. These
findings demonstrate that the proposed FE-CapsNet has strong controllability and deployment potential in
real-world applications. It is suitable for structured data mining tasks in high-risk domains such as financial
risk control, medical decision support, and network behavior recognition. The model provides reliable
technical support for improving the accuracy and security of intelligent decision-making systems. Future
work will proceed in two directions. First, the integration of Graph Neural Networks or large language
models may be explored as auxiliary modules to enhance the model's capability in handling non-Euclidean
structured data. Second, lightweight architectures suitable for online learning and cross-domain transfer
should be investigated to meet practical demands for faster response, lower resource consumption, and better
interpretability. Additionally, the ability to quickly adapt to dynamic data changes and maintain long-term
robustness will be key challenges for future research.
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