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Abstract: This study focuses on the problem of multi-node task scheduling and resource optimization in
distributed systems. A collaborative optimization method based on multi-agent reinforcement learning is
proposed. By modeling the system as a partially observable multi-agent Markov decision process, each
agent is enabled to make autonomous decisions based on local observations, while a global reward
mechanism ensures overall optimization. In terms of algorithm design, a graph attention mechanism is
introduced to enhance the modeling of inter-agent dependencies. In addition, a value function
decomposition framework is adopted to improve the stability of joint policy convergence. The experimental
setup is built on the real-world Cluster Trace dataset. A simulated environment is constructed to evaluate the
proposed method across multiple metrics, including average task completion time, resource utilization, and
system throughput. The performance is compared with traditional scheduling strategies and representative
reinforcement learning algorithms. Results show that the proposed method achieves significant
improvements in scheduling efficiency and resource usage. It effectively enhances the operational
performance and intelligent coordination level of distributed systems.

Keywords: Multi-agent reinforcement learning; distributed scheduling; graph attention mechanism;
resource optimization.

1. Introduction
With the rapid development of information technology and communication networks, distributed systems
have gradually become a key component of modern computing architectures [1]. They are widely applied in
fields such as edge computing, cloud computing, industrial automation, intelligent transportation, and energy
scheduling. The core features of distributed systems include collaborative operation among nodes, resource
sharing, and parallel task processing, which help improve overall computational efficiency and system
reliability. However, as system scale expands and task complexity increases, achieving efficient collaboration,
dynamic task allocation, and optimal resource scheduling across heterogeneous nodes has become a critical
challenge in distributed system research. Traditional centralized control methods often suffer from high
computational complexity, communication bottlenecks, and poor system stability in high-dimensional,
dynamic, and uncertain environments. These limitations make them inadequate for the performance demands
of future intelligent systems [2].

To address these challenges, reinforcement learning (RL), as an intelligent decision-making approach with
adaptability and self-optimization capabilities, has attracted significant attention in recent years. Particularly
in complex systems with large and dynamic state spaces, RL can optimize policies through interaction with



the environment, aiming to maximize long-term objectives. Building on this, Multi-Agent Reinforcement
Learning (MARL) introduces multiple agents to learn and make decisions collaboratively. This allows each
agent to operate autonomously while enabling system-wide coordination and optimization. MARL naturally
aligns with the structural characteristics of distributed systems and effectively enhances task responsiveness,
resource efficiency, and overall robustness. Therefore, applying MARL to collaborative optimization tasks in
distributed systems holds strong theoretical and practical significance [3].

One of the main challenges in multi-agent systems lies in the design of cooperation mechanisms,
communication structures, and ensuring the stability of policy convergence. In distributed systems, issues
such as information asymmetry, uneven resource distribution, and limited communication may arise between
nodes. These factors make it difficult for traditional RL methods to be directly applied in multi-agent
scenarios. The MARL framework offers a decentralized control paradigm where each agent can learn and
make decisions based on local information while achieving global coordination through specific interaction
mechanisms. With the advancement of deep learning, deep multi-agent reinforcement learning has further
expanded the expressiveness and applicability of MARL algorithms. This makes it possible to handle high-
dimensional state and policy spaces, offering new solutions for distributed system optimization.

Currently, MARL-based optimization methods have demonstrated superior performance compared to
traditional approaches in various application areas, including energy scheduling, traffic signal control,
intelligent manufacturing, and autonomous system collaboration. These methods provide advantages in
decision accuracy and real-time responsiveness. They also offer strong transferability and scalability,
enabling effective adaptation to complex and dynamic environments with multiple concurrent tasks.
Therefore, advancing research on MARL-based collaborative optimization in distributed systems not only
promotes the development of intelligent systems toward autonomy, efficiency, and reliability but also
provides solid algorithmic and theoretical support for building future ubiquitous intelligent networks [4].

In conclusion, this study aims to conduct in-depth research on "Multi-Agent Reinforcement Learning-Based
Collaborative Optimization for Distributed Systems." It explores effective mechanisms and algorithmic
frameworks for achieving efficient cooperation among distributed agents in complex and dynamic
environments. This research contributes to the theoretical foundations at the intersection of multi-agent
systems and distributed optimization and holds broad engineering value.

2. Related work
In recent years, collaborative optimization in distributed systems has emerged as one of the core issues in
intelligent systems research. Traditional optimization methods mostly rely on centralized control or heuristic
algorithms. These include resource scheduling and task allocation strategies based on integer programming,
graph theory models, or genetic algorithms. While effective in specific scenarios, such methods often struggle
in distributed environments characterized by multiple objectives, strong coupling, and high dynamics. They
fail to adapt quickly to environmental changes or update strategies in time. Moreover, centralized approaches
face risks of single-point failure and scalability bottlenecks, which impose significant performance
constraints in large-scale deployments.

To address the limitations of centralized control, researchers have gradually introduced distributed
optimization methods based on reinforcement learning. Notable progress has been made especially in single-
agent reinforcement learning. In scenarios where multiple edge nodes or subsystems are modeled separately,
reinforcement learning replaces traditional rules by learning optimal control strategies through continuous
interaction. However, single-agent approaches are severely limited in multi-agent systems. They struggle to
handle instability between policies and the high-dimensional coordination required by dynamic environments.
In response, multi-agent reinforcement learning has emerged as a natural extension. It has been widely



applied to model and optimize collaborative behaviors among agents. Representative methods include
Independent Q-Learning [5], MADDPG [6], and QMIX. These explore both practical and theoretical aspects
under different frameworks such as fully independent learning, centralized training with decentralized
execution, and value function mixing.

Despite the promising results achieved by existing approaches in multi-agent settings, many challenges
remain. These include policy non-stationarity, communication cost control among agents, difficulty in joint
policy convergence, and limited generalization ability. Recent studies have explored solutions by introducing
attention mechanisms, graph neural networks, and meta-learning frameworks to enhance dependency
modeling and information integration among agents. Additionally, customized collaboration mechanisms
tailored to specific tasks have become a research focus. Examples include task-driven group collaboration
and distributed game-theoretic strategy integration. These methods have contributed to the practical viability
of multi-agent collaborative optimization. As a result, current research trends are shifting toward more
general, stable, and interpretable multi-agent reinforcement learning models to meet the increasingly complex
and dynamic coordination demands in distributed systems.

3. Method
In order to cope with the challenges of high task complexity, strong node heterogeneity and limited
information transmission in distributed systems, this paper proposes a collaborative optimization method
based on Multi-Agent Reinforcement Learning (MARL), which aims to optimize the overall performance of
the system through decentralized strategy learning. In this method, each agent represents a sub-node in the
system, realizes autonomous learning and decision-making through local perception and interaction with the
environment, and realizes collaborative behavior among agents with the help of global reward design and
coordination mechanism. This method can effectively overcome the shortcomings of centralized methods in
scalability and robustness, and show good adaptability and optimization effect in multi-task collaboration and
dynamic resource scheduling scenarios. Its model architecture is shown in Figure 1.

Figure 1. Overall model architecture



As shown in Figure 1, the multi-agent reinforcement learning network architecture proposed in this paper
consists of multiple agents. Each agent extracts key features based on local observation information through
the graph attention mechanism and outputs the current action based on the policy network. The action
information of all agents is fused through the Mixing Network to form a joint action value function to
maximize the global return. Under the framework of centralized training and decentralized execution, this
structure effectively improves the stability of policy learning and the overall collaborative optimization
capability of the system.

In the model construction, the entire distributed system is modeled as a multi-agent extension of a partially
observable Markov decision process (POMDP). Suppose there is a set of agents },...,,{ 21 NaaaA  , each
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In order to enhance the stability and convergence of the strategy, this paper introduces a hybrid architecture
based on value function decomposition and uses the QMIX algorithm to model the joint action value
function. Specifically, let the joint state-action value function be ),( tt
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In addition, in order to address the problem of limited information transmission that may exist in actual
systems, this paper integrates the attention mechanism into the policy network to enhance the implicit
modeling capabilities between multiple agents. Specifically, the interaction between agents is realized
through a graph attention module, and each node performs attention weighting based on neighbor
information to learn a more context-aware policy representation. This mechanism enables agents to achieve
near-optimal global behavior based on local collaboration in the absence of global information. Combining
the above designs, the method proposed in this paper achieves efficient collaboration and optimal task
allocation among multiple agents in a distributed system while ensuring decentralized decision-making and
execution of the system.



4. Experiment
4.1 Datasets
The dataset used in this study is the Alibaba Cluster Trace (Alibaba Cluster Data V2018), released by
Alibaba Group [7]. It is widely used in research on task scheduling, resource allocation, and system
optimization in large-scale distributed computing clusters [8-10]. The dataset is derived from server logs in
Alibaba’s real production environment. It contains 24-hour operational records from over 8,000 machines.
The data includes detailed information on CPU, memory, and disk usage, task lifecycles, and job scheduling.
It is one of the most representative public datasets for cloud resource scheduling research.

The dataset is well-structured and consists of three core subsets: machine usage, batch task, and container
usage. These subsets enable the analysis of system behavior under conditions such as dynamic task
submission, resource contention, and service quality assurance. Each record is time-stamped, allowing for the
tracking of workload trends across heterogeneous nodes. It also supports modeling and evaluation of system
efficiency at various levels, including individual nodes, sub-clusters, and the entire system. These features
make the dataset highly suitable for training and validating multi-agent collaborative optimization strategies.

In this study, a highly dynamic and non-stationary distributed system simulation environment was
constructed based on scheduling behaviors and resource usage patterns extracted from the dataset. Each agent
corresponds to an independent node in the cluster. Agents learn optimal task scheduling and resource
allocation strategies through local observation. A global reward mechanism is also incorporated to guide the
system toward overall load balancing, resource utilization maximization, and task completion time
minimization. This setup validates the feasibility and effectiveness of the proposed method in real-world
scenarios.

4.2 Experimental Results

1) Comparative experiment with traditional heuristic scheduling algorithm
This paper first presents a comparative experiment with the traditional heuristic scheduling algorithm, and
the actual results are shown in Table 1.
Table 1: Comparison of Scheduling Performance between MARL and Traditional Heuristic Algorithms

Method
Avg Task
Completion Time
(s)

Resource Utilization
(%)

System Throughput
(tasks/h)

FIFO[11] 12.7 68.3 2870
Round Robin[12] 10.9 72.1 3120
DRF[13] 9.4 78.5 3345
DQN[14] 9.2 78.1 3403
MARL(Ours) 7.6 85.7 3780

Experimental results show that the proposed MARL method outperforms traditional heuristic algorithms and
single-agent reinforcement learning methods across multiple core scheduling metrics. Specifically, MARL
achieves the best performance in terms of average task completion time, reaching only 7.6 seconds. This is
significantly better than FIFO (12.7 seconds), Round Robin (10.9 seconds), and more advanced methods such
as DRF (9.4 seconds) and DQN (9.2 seconds). These results indicate that collaborative learning and policy
sharing among agents lead to more efficient task scheduling and resource matching.



In terms of resource utilization, MARL also demonstrates a clear advantage, reaching 85.7%. This represents
a notable improvement over DQN (78.1%) and DRF (78.5%). Traditional strategies like FIFO and Round
Robin perform poorly, with utilization rates of only 68.3% and 72.1%, respectively, due to their lack of
adaptive learning. This suggests that MARL can dynamically optimize resource scheduling strategies and
improve overall node utilization in highly dynamic and heterogeneous system environments.

Regarding system throughput, MARL again performs best, completing 3,780 tasks per hour. This marks an
improvement of more than 20% over traditional algorithms. The result stems from both the efficient
collaboration mechanisms among agents and the model’s stability and generalization in complex
environments. Overall, MARL enhances the scheduling performance of distributed systems and confirms the
feasibility and effectiveness of using multi-agent learning frameworks for collaborative optimization in large-
scale heterogeneous settings.

2) Hyperparameter sensitivity experiments
Furthermore, this paper gives the results of hyperparameter sensitivity experiments, mainly focusing on
Epoch and Lr. First, the experimental results of Epoch are given, as shown in Table 2.

Table 2: Hyperparameter sensitivity experiment results (Epoch)

Epoch
Avg Task
Completion Time
(s)

Resource Utilization
(%)

System Throughput
(tasks/h)

50 10.8 72.4 3090
125 8.9 79.8 3455
150 8.3 82.1 3610
175 7.8 84.3 3715
200 7.6 85.7 3780

Experimental results show that the model’s performance in task scheduling improves steadily with the
increase in training epochs. The average task completion time decreases from 10.8 seconds at epoch 50 to 7.6
seconds at epoch 200, exhibiting a stable and significant convergence trend. This indicates that, through
continuous interaction and learning, the multi-agent reinforcement learning model can gradually form better
strategies to improve task assignment and resource matching efficiency.

Resource utilization also shows a clear upward trend, increasing from an initial 72.4% to 85.7%. This result
reflects the agents’ enhanced perception of node resource states as training progresses. Their strategies
become more reasonable, reducing idle resources and waste. Moreover, performance growth becomes stable
after 150 epochs, suggesting that the policy is approaching an optimal region and that further training yields
diminishing returns.

System throughput increases as well with the number of training epochs, ultimately reaching 3,780 tasks per
hour. This trend demonstrates that a multi-agent system, after sufficient training, can coordinate node
behaviors efficiently, achieving load balancing and parallel task execution. Therefore, an appropriate training
duration is essential for unlocking full model performance. At the same time, it highlights the need to balance
performance gains against training costs in practical deployment.

At the same time, the experimental results of different learning rates are given, as shown in Table 3.

Table 3: Hyperparameter sensitivity experiment results (Learning Rate)

Learning Rate Avg Task Resource Utilization System Throughput



Completion Time
(s)

(%) (tasks/h)

0.001 9.7 74.2 3260
0.0005 8.6 79.5 3475
0.0003 8.1 82.0 3605
0.0002 7.8 84.1 3720
0.0001 7.6 85.7 3780

Experimental results show that the learning rate has a significant impact on the performance of multi-agent
reinforcement learning models. A higher learning rate (e.g., 0.001) accelerates early convergence but leads to
poor final performance. The average task completion time reaches 9.7 seconds, with both resource utilization
and system throughput remaining low. This may be due to large update steps causing oscillations in policy
learning, which affect the model's stability and overall scheduling performance.

When the learning rate is reduced to 0.0005 and 0.0003, the model shows clear performance improvements.
The average task completion time drops to 8.1 seconds, and system throughput increases to 3,605 tasks per
hour. This indicates that a moderate learning rate helps the model converge smoothly to better policies.
Agents can coordinate more effectively in task scheduling and resource allocation. Resource utilization also
rises steadily, reflecting enhanced adaptability of the learned strategies to system states.

Further reducing the learning rate to 0.0002 and 0.0001 leads to the best overall performance. At 0.0001, the
model achieves the most optimal scheduling outcome, with task completion time reduced to 7.6 seconds,
resource utilization reaching 85.7%, and throughput rising to 3,780 tasks per hour. These results suggest that
a smaller learning rate allows for more fine-grained exploration in the policy space, helping agents avoid
local optima and enabling better collaborative optimization. Therefore, properly setting the learning rate is
crucial for achieving stable scheduling and improved global performance in reinforcement learning applied to
distributed systems.

3) Experiment on the influence of local observation and global reward design on strategy convergence

In this section, this paper further analyzes the impact of local observation and global reward design on
strategy convergence. The experimental results are shown in Figure 2.

Figure 2. The impact of local observation and global reward design on policy convergence



As shown in Figure 2, when using only local observations, the model exhibits noticeably slow convergence
throughout the training process. The average task completion time shows a limited decrease from its initial
value and levels off in the later stages. This indicates that, in the absence of global system awareness, agents
rely primarily on their own experience. As a result, it becomes difficult to achieve globally optimal task
scheduling and resource allocation, which limits the overall system performance improvement.

In contrast, the strategy using only global rewards shows better convergence in the early phase compared to
the local observation scheme. The average task completion time drops more rapidly, suggesting that global
feedback helps guide agents to adjust their policies toward system-wide optimization. However, due to the
lack of fine-grained local perception, agents may fail to respond adequately to local states. This leads to a
situation where performance still has room for improvement even after policy convergence.

When local observations are combined with global rewards, the model achieves the best convergence trend.
The average task completion time continues to decrease and reaches its minimum at epoch 200. This result
demonstrates that the joint modeling of local and global information significantly enhances agent
collaboration. It improves responsiveness to local environments while maintaining alignment with global
optimization goals. Overall, this design ensures stable policy convergence and substantially improves
scheduling efficiency and resource utilization in the distributed system.

4) Experiment on improving multi-node scheduling performance based on graph attention mechanism
Next, this paper also analyzes the ablation experiment of the multi-node scheduling performance based on the
graph attention mechanism, and the experimental results are shown in Figure 3.

Figure 3.Multi-node Scheduling Performance with Graph Attention Mechanism

As shown in Figure 3, introducing the Graph Attention Network (GAT) significantly improves overall system
performance in multi-node scheduling. Compared with strategies that do not use graph structures or rely on
mean aggregation or fully connected architectures, GAT achieves the lowest average task completion time at
7.6 seconds. This indicates that, after perceiving local topological information, GAT can make more accurate
scheduling decisions, reducing task queuing and waiting time.

In terms of resource utilization, the GAT method also performs best, reaching 85.7%, which is much higher
than the 78.2% observed without graph structures. This suggests that the attention mechanism effectively
models dependencies among agents, enabling more reasonable coordination and allocation of resources. It
helps avoid idle or overloaded nodes. Although the fully connected approach shows some improvement, it



lacks an explicit weighting mechanism. Unlike GAT, it cannot assign higher importance to key neighbors,
resulting in performance gaps.

The trend in system throughput further supports these findings. As the graph modeling capability improves,
task processing capacity steadily increases. The GAT-based strategy ultimately reaches a peak of 3,780 tasks
per hour. Overall, the GAT scheduling strategy outperforms other methods not only on individual metrics but
also in terms of system-wide efficiency and collaborative decision-making among agents. This demonstrates
its strong potential for application in complex distributed environments.

5) Loss function changes with epoch
Finally, this paper gives a graph of the loss function changing with epoch, as shown in Figure 4.

Figure 4. Loss function drop graph
As shown in Figure 4, both the training loss and validation loss exhibit a steady downward trend throughout
the training process. This indicates that the model is progressively learning effective strategies and gradually
approaching the optimal solution. The loss decreases rapidly during the first 100 epochs, suggesting that the
model quickly captures the fundamental patterns of the task in the early stages.

As training continues, the rate of loss reduction slows down and stabilizes around epoch 150. At this point,
the gap between training loss and validation loss becomes minimal. This suggests that the model performs
well not only on the training set but also generalizes effectively to unseen data, with no significant signs of
overfitting. The stable convergence process reflects the effectiveness of model training and the robustness of
policy optimization. Moreover, the overall fluctuation in validation loss remains small, indicating that the
model maintains high consistency and robustness across multiple training rounds. It is not affected by
external disturbances that could cause performance instability. Overall, the observed loss trend demonstrates
good convergence and stability of the proposed method, providing a solid foundation for improving task
scheduling performance in subsequent applications.

5. Conclusion
This paper addresses the problem of multi-node collaborative optimization in distributed systems and
proposes a scheduling method based on multi-agent reinforcement learning. Under a centralized training and
decentralized execution framework, the method introduces a graph attention mechanism and joint reward
design. These components enhance the efficiency of information exchange among agents and improve policy



convergence quality. Experimental results under various settings show that the proposed method outperforms
traditional heuristic algorithms and classical single-agent reinforcement learning models in key metrics such
as task completion time, resource utilization, and system throughput. This validates its adaptability and
effectiveness in complex scheduling scenarios. To further improve the learning capability and generalization
performance of the multi-agent system, a graph-based modeling module is incorporated into the policy
network. Multi-layer attention computation enhances agents’ sensitivity to the states of neighboring nodes.
The experimental results demonstrate that this mechanism significantly improves collaborative scheduling
among agents, guiding the entire system toward a globally optimal state. In addition, a comparative analysis
of local observation and global reward mechanisms confirms their combined contribution to stable policy
convergence.

The paper also conducts sensitivity experiments on key hyperparameters, including learning rate and training
epochs. Results indicate that appropriate hyperparameter settings not only improve learning efficiency but
also play a critical role in the final performance of the learned policy. Overall, the proposed method
demonstrates strong scalability and generality. It is applicable to scheduling optimization tasks in various
dynamic distributed environments, offering practical algorithmic support and theoretical insights for
intelligent scheduling systems. Future work will expand in three directions. First, we will study the
convergence mechanisms of multi-agent policies under communication constraints in large-scale
heterogeneous environments. Second, we will explore collaborative learning methods in privacy-sensitive
distributed scenarios by integrating mechanisms such as federated learning. Third, we aim to deploy the
current model on real-world edge computing platforms for system-level integration and engineering
validation, enhancing the practical applicability and scalability of the proposed algorithm.
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