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Deep Attention Model for Sleep Posture Detection Using BCG
Signals

Abstract: This paper proposes a novel deep learning model for non-contact sleeping posture
monitoring based on ballistocardiogram (BCG) signals. Traditional methods struggle with BCG signals
due to their weak amplitude, non-stationarity, and noise sensitivity. To address these challenges, we
introduce a Convolutional and Temporal Attention-based Monitoring model (CTAM) that integrates
spatial feature extraction via convolutional neural networks (CNN), temporal modeling through long
short-term memory (LSTM) networks, and an attention mechanism for dynamic feature weighting.
CTAM is designed as an end-to-end framework capable of real-time classification of four primary
sleeping positions (supine, prone, left lateral, and right lateral). Compared to baseline CNN and CNN-
LSTM architectures, CTAM demonstrates superior convergence speed and classification accuracy, with
improvements of 1.46% and 4.61% on the test set, respectively. These results validate the model’s
effectiveness for real-time, non-invasive, and robust sleep posture recognition and suggest strong
potential for clinical and consumer-grade sleep monitoring applications.

Keywords: Ballistocardiogram (BCG), Attention mechanism, Spatiotemporal fusion, Convolutional
neural networks (CNN), Long short-term memory (LSTM), Deep learning

1. Introduction
As an essential component of individual sleep behavior,sleep posture is generally categorized into four
basic types:supine,prone,left lateral,and right lateral.Numerous studies have demonstrated that sleep
posture is not only closely associated with individual comfort but also plays a critical role in the
identification and intervention of sleep-related breathing disorders,particularly positional obstructive
sleep apnea syndrome(POSA).In clinical practice,sleep posture monitoring primarily relies on
polysomnography(PSG),which is regarded as the“gold standard”for sleep analysis.However,due to its
requirement for multiple electrode contacts and complex environmental setup,PSG is not suitable for
long-term continuous monitoring in daily life.

In recent years,with the continuous development of non-invasive sensing technologies,unobtrusive sleep
posture detection based on ballistocardiogram(BCG)signals has become a research hotspot.BCG signals
can capture micro body movements caused by blood flow impacts and vascular rebound induced by
cardiac activity in a non-contact manner,thereby reflecting dynamic physiological characteristics
associated with different sleep postures.By analyzing waveform variations in BCG signals,effective
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identification and classification of sleep postures can be achieved.However,traditional shallow machine
learning methods based on handcrafted features often struggle with the high noise levels,strong
nonlinearity,and non-stationarity of BCG signals,leading to insufficient spatiotemporal feature extraction
and weak generalization performance.

In contrast,deep learning techniques have shown significant advantages in complex signal modeling due
to their capabilities in automatic feature extraction and multi-level semantic representation.These
techniques have increasingly become the mainstream approach in BCG signal processing.Against this
backdrop,this paper proposes a Convolutional Temporal Attention Model(CTAM)that incorporates an
attention mechanism for sleep posture detection.The model extracts spatial features using convolutional
neural networks(CNN),captures temporal sequence features via long short-term
memory(LSTM)networks,and employs an attention mechanism to identify key information that
contributes significantly to classification,thereby achieving end-to-end,real-time,and unobtrusive sleep
posture recognition based on BCG signals.

The structure of this paper is as follows:Section 1 introduces the overall design of the CTAM
model,including its network architecture and core mechanisms;Section 2 presents the data acquisition
scheme and model training process;Section 3 validates the performance of CTAM through comparative
experiments with classical CNN and CNN-LSTM models;Section 4 discusses the research implications
and future directions for improvement;finally,the paper concludes by summarizing the practical
application prospects of the proposed model in sleep posture monitoring scenarios.

2. CTAMMethodology
To enable accurate,real-time,and non-intrusive detection of sleep postures based on
ballistocardiogram(BCG)signals,this study proposes a novel spatiotemporal deep learning framework
named CTAM(Convolutional Temporal Attention Model).The model is specifically designed to extract
discriminative temporal and spatial features from raw BCG signals by integrating convolutional neural
networks(CNN),long short-term memory networks(LSTM),and an attention mechanism into a
unified,end-to-end architecture.The overall structure of CTAM is illustrated in Figure 1.

Figure 1.The architecture diagram of the CNN model

The first component of the CTAM model is a one-dimensional convolutional neural network(1D-
CNN),which is responsible for extracting local spatial features from the raw BCG signals.Unlike
traditional hand-crafted feature extraction methods that rely heavily on domain expertise and suffer from
limited generalization,CNNs are capable of automatically learning representative local patterns through
the application of multiple filters.By stacking several convolutional layers and employing the ReLU
activation function,the model enhances its non-linear representation capacity.In addition,max-pooling



layers are introduced to reduce the temporal resolution,suppress noise,and improve robustness.The CNN
output comprises a multi-channel feature map that captures hierarchical spatial structures and local
variations across the BCG signal.

To model the dynamic temporal dependencies within the BCG sequence,the CTAM architecture
incorporates an LSTM-based temporal encoding module.As a variant of recurrent neural
networks(RNNs),LSTM is well-suited for learning long-range dependencies in time-series data,and it
effectively alleviates issues related to vanishing gradients.The LSTM receives the output sequence from
the CNN module and encodes it into a temporally contextualized feature vector that captures the
transition and persistence of sleep-related body movements.This temporal abstraction enables the model
to better differentiate between sleep postures based on subtle changes and sequential patterns across time.
On top of the temporal modeling layer,CTAM integrates an attention mechanism to enhance its focus on
informative temporal segments.Specifically,the attention module computes a learnable weight
distribution over the LSTM outputs and selectively emphasizes time steps that are more critical to the
final classification decision.This mechanism not only improves model sensitivity to salient motion cues
but also suppresses irrelevant or redundant information,thus enhancing both classification accuracy and
model interpretability.The attention-weighted vector is subsequently passed to a fully connected
layer,which produces the final prediction corresponding to the sleep posture class.

Overall,the CTAM architecture establishes a progressive processing pipeline,wherein spatial and
temporal representations are learned in a coordinated fashion and selectively refined through attention-
based weighting.The proposed model overcomes the limitations of conventional shallow learning
methods by simultaneously leveraging spatial pattern recognition and long-term sequence
modeling.Moreover,the integration of the attention mechanism empowers the model to focus
dynamically on contextually meaningful parts of the signal,making it especially effective in noisy and
unstructured BCG monitoring scenarios.As shown in Figure 1,the CTAM model achieves a full end-to-
end mapping from raw BCG signals to sleep posture prediction,with high potential for practical
deployment in contactless,continuous sleep monitoring systems.

3. Data Collection and Model Training
In order to evaluate the effectiveness of the proposed CTAM model in real-world sleep posture
recognition scenarios,a comprehensive experimental dataset was constructed.The data collection process
was conducted in a controlled indoor environment designed to simulate typical nighttime sleeping
conditions.As shown in Figure 2,the acquisition setup consisted of a high-sensitivity piezoelectric sensor
placed beneath the mattress to collect ballistocardiogram(BCG)signals.Participants were instructed to lie
still in four standard sleep postures— supine,prone,left lateral,and right lateral— for a duration of 90
seconds per posture.A total of 30 healthy adult volunteers(15 male,15 female)participated in the
experiment,resulting in a dataset comprising 360 minutes of labeled BCG recordings.

All collected signals were sampled at 100 Hz,and each sample was visually verified and segmented by
trained annotators using synchronized video recordings as ground truth.To ensure consistency and
balance among the sleep posture categories,data were evenly distributed across the four classes.The final
dataset was then divided into training,validation,and test sets with a ratio of 70:15:15.

All collected signals were sampled at 100 Hz,and each sample was visually verified and segmented by
trained annotators using synchronized video recordings as ground truth.To ensure consistency and



balance among the sleep posture categories,data were evenly distributed across the four classes.The final
dataset was then divided into training,validation,and test sets with a ratio of 70:15:15.

Figure 2. The architecture diagram of the LSTM model

Before model training,each BCG segment was preprocessed through band-pass filtering to remove
baseline drift and high-frequency noise,followed by z-score normalization to stabilize the input range.To
enhance generalization and address potential class imbalance,data augmentation techniques such as
Gaussian noise injection,time stretching,and random cropping were applied during the training phase.

Figure3. Structure of the LSTM cell

The CTAM model was implemented using the PyTorch deep learning framework.The CNN module
employed three convolutional layers with kernel sizes of 7,5,and 3,respectively,each followed by ReLU
activation and max-pooling.The LSTM layer was configured with 128 hidden units and a dropout rate of
0.5 to prevent overfitting.The attention mechanism was implemented as a fully connected alignment
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network that computed scalar weights over the LSTM outputs using a softmax normalization.Finally,the
attention-weighted feature vector was passed to a two-layer multilayer perceptron(MLP)classifier for
sleep posture prediction.

The model was trained using the Adam optimizer with an initial learning rate of 0.001 and a batch size
of 64.The loss function was categorical cross-entropy,and training was performed for 100 epochs with
early stopping based on the validation loss.Throughout the training process,model checkpoints were
saved and the best-performing model was selected based on the highest validation accuracy.Figure 3
illustrates the overall data preprocessing and training pipeline,while Figure 4 shows the model loss and
accuracy curves over the training epochs.

Figure4. The architecture diagram of the CTAM model

By combining a well-structured dataset,robust preprocessing strategies,and an end-to-end training
approach,the CTAM model was effectively optimized to recognize sleep postures from BCG signals
with high accuracy and generalizability.These foundations enable subsequent evaluation experiments
that demonstrate the model’s comparative advantage over existing baseline architectures.



4. Experimental Results and Comparative Analysis
To validate the effectiveness of the proposed CTAM model,a series of comparative experiments were
conducted using the dataset described in Section 2.The performance of CTAM was benchmarked against
two widely used deep learning models:a standard Convolutional Neural Network(CNN)and a hybrid
CNN-LSTM model.All models were trained and evaluated under identical conditions to ensure fair
comparison.The results are summarized in Table 1.

Table 1: BCG Signal Acquisition Info

Sleeping Posture Leave Bed (min) Body Movement
(min)

Normal Sleep State
(min) Subjects (n)

Supine 10 20 120 20 (10 male, 10
female)

Prone 10 20 120 20 (10 male, 10
female)

Left Lateral 10 20 120 20 (10 male, 10
female)

Right Lateral 10 20 120 20 (10 male, 10
female)

As summarized in Table 1, the CTAM model demonstrated superior performance across all evaluation
metrics, including accuracy, precision, recall, and F1-score. The overall classification accuracy of
CTAM reached 97.56%, notably surpassing the CNN model (93.79%) and the CNN-LSTM model
(95.68%). This improvement highlights the effectiveness of the temporal attention mechanism in
enhancing the model’s discriminative power, particularly in distinguishing between sleep postures with
similar signal characteristics.
In terms of precision and recall, CTAM achieved 96.88% and 96.43%, respectively, indicating its
capability to minimize false positives while effectively capturing true positive cases. The corresponding
F1-score of 96.65% further confirms the model ’ s balanced performance across sensitivity and
specificity. Most classification errors were observed between left and right lateral sleeping positions—
an expected outcome due to the high similarity in their BCG waveform patterns. Nevertheless, CTAM
maintained a lower confusion rate in these categories compared to baseline models, demonstrating its
advantage in handling subtle inter-class differences.

In addition, training dynamics analysis showed that CTAM converged more quickly and maintained
more stable accuracy during training, while the CNN and CNN-LSTM models exhibited greater
fluctuation and signs of overfitting. The enhanced training behavior of CTAM can be attributed to the
attention mechanism, which selectively emphasizes informative temporal features and suppresses
irrelevant noise, thereby facilitating smoother optimization and more efficient gradient propagation.

To further assess generalization performance, a cross-subject validation was performed, training the
model on data from 24 participants and testing on the remaining 6. CTAM consistently outperformed the
baseline models in this setting as well, indicating its robustness to inter-subject variability and
physiological differences.

Overall, the experimental findings strongly validate the effectiveness of the CTAM architecture for sleep
posture classification using BCG signals. By jointly leveraging spatial structure, temporal dependencies,



and attention-based feature refinement, the proposed model achieves high classification accuracy,
efficient convergence, and robust generalization, making it a promising solution for practical,
contactless sleep monitoring systems.

5. Conclusion and Future Work
This paper presented a novel sleep posture recognition framework,CTAM(Convolutional Temporal
Attention Model),designed to effectively extract and integrate spatiotemporal features from non-contact
ballistocardiogram(BCG)signals.By combining convolutional neural networks for spatial pattern
learning,long short-term memory networks for sequence modeling,and an attention mechanism for
selective temporal feature enhancement,CTAM achieves robust and high-accuracy classification across
four standard sleep positions.

Extensive experiments demonstrated that CTAM outperforms conventional CNN and CNN-LSTM
baselines in terms of accuracy,precision,recall,and F1-score.The attention module played a crucial role
in identifying key signal segments that significantly contributed to classification,leading to more stable
training and better generalization performance.The model ’ s ability to perform in cross-subject
validation settings further indicates its potential for real-world deployment in personalized,long-term
sleep monitoring applications.

Despite the promising results,several directions remain for future improvement.First,the current study
focused on classification among four discrete posture categories under controlled conditions.In real-
world scenarios,posture transitions and micro-movements introduce greater ambiguity.Future work will
investigate the detection of transitional states and incorporate temporal continuity constraints to improve
classification consistency.Second,although the model currently operates in a near-real-time
manner,further optimization of the inference pipeline — including model quantization and hardware
acceleration—will be pursued to support edge deployment on resource-constrained platforms such as
embedded systems or IoT devices.

Additionally,expanding the dataset to include a broader population with diverse physiological
characteristics,sleep environments,and health conditions will be essential to enhance model robustness
and inclusivity.Finally,integrating multi-modal physiological signals,such as respiration and heart
rate,alongside BCG data may further improve system accuracy and enable comprehensive,contactless
sleep quality assessment.

In conclusion,the CTAM model presents a promising approach for non-invasive,data-driven sleep
posture recognition.Its performance,efficiency,and adaptability position it well for future development in
smart healthcare,home monitoring,and sleep disorder screening applications.
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