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Abstract: With the acceleration of the Internet of Everything, network congestion has become
increasingly serious, affecting network operation efficiency and user experience. Therefore,
accurate prediction of network and congestion conditions is of great significance for optimizing
network management systems. This study proposes a network congestion prediction method based
on association rules and a long short-term memory network (LSTM) to improve the accuracy of
network prediction. First, we use the association rule algorithm to mine the potential relationship
between different time periods, gateway networks, and environmental factors, extract highly
relevant features from historical network data, and use them as part of the input features of the
LSTM model. Subsequently, LSTM further learns time series patterns by modeling the time
dependency of the network to achieve accurate prediction of future network conditions. The
experiment uses the PeMS network dataset for verification and compares it with a variety of
benchmark models (ARIMA, SVR, CNN-LSTM, Transformer, etc.). The experimental results show
that the proposed method outperforms other methods in terms of MSE, RMSE, and MAPE
indicators, especially in complex network scenarios, and has stronger prediction stability. In
addition, to further analyze the effectiveness of the model, we conducted an ablation experiment.
The results show that association rules can effectively improve the prediction ability of LSTM, and
feature engineering also has a significant impact on the accuracy of the model. This study also
analyzed the effects of different optimizers (SGD, AdamW, Adam) and learning rates and found
that the Adam optimizer and a smaller learning rate (0.001) can improve the convergence stability
and prediction accuracy of the model. Although this study has achieved good results in network
prediction, there are still some challenges, such as the joint prediction of multiple gateways and
real-time data fusion. Future research can explore new deep learning architectures, such as
Transformer and graph neural network (GNN), to further optimize network prediction and combine
reinforcement learning to improve the adaptability of the model, providing stronger technical
support for the development of network management systems.

Keywords: Network congestion prediction; Data mining; Association rules; Long short-term
memory network.

1. Introduction

With the rapid development of the Internet of Everything, network congestion has become
increasingly serious and has become a key factor restricting network development and application
efficiency [1,2]. Traditional network management methods can no longer cope with increasingly
complex changes in the network. Consequently, accurately predicting network congestion and
optimizing network management and scheduling have emerged as prominent research areas. In



recent years, with the rapid development of big data and artificial intelligence technologies, the
application of data mining technology in network prediction has gradually attracted attention [3].
Data mining can reveal the inherent laws of networks through in-depth analysis of historical
network data, thereby providing data support for network management decisions. In this context,
network congestion prediction methods based on association rules and long short-term memory
(LSTM) models have gradually become the focus of research [3].

Data mining, as a technology for discovering potential patterns and laws from large-scale data, is
widely used in various fields. In the field of networks, data mining can not only help us explore the
laws of network but also predict future network conditions by analyzing historical data. Association
rules are a classic data mining technology that reveals the potential associations between things by
analyzing the relationships between items in a data set. In network congestion prediction,
association rules can help us discover the association between networks at different times and
locations, providing a certain basis for congestion prediction [4]. However, network is not only
affected by factors such as time and location but also by a variety of complex factors, which makes
traditional association rules face certain limitations when processing complex network data [5].

In order to overcome the limitations of association rules, more and more studies have begun to use
deep learning methods for network prediction, among which long short-term memory network
(LSTM) has become an important choice due to its excellent time series modeling ability [6].
LSTM is a special recurrent neural network (RNN) that can effectively process and predict time
series data and has strong long-term dependent memory ability. In network congestion prediction,
LSTM can analyze historical network data and learn the spatiotemporal variation pattern of network
so as to accurately predict future network conditions. Compared with traditional machine learning
methods, LSTM can automatically extract complex features in data, avoid the trouble of manually
designing features, and improve the accuracy and generalization ability of prediction [7].

Combining association rules with LSTM can give full play to their respective advantages and
improve the effect of network congestion prediction. Association rules can reveal the correlation
between different factors and provide richer information for the input of the LSTM model, thereby
improving the prediction accuracy of the model. LSTM can use its powerful time series modeling
ability to capture the time-varying characteristics of network and further improve the reliability and
accuracy of prediction. This combined method can not only process multidimensional, nonlinear
and time-varying network data but also further explore the deep laws of network changes through
multi-level information fusion.

This study aims to explore the network congestion prediction method based on association rules and
LSTM. Through in-depth analysis of historical network data, combined with data mining and deep
learning technology, a new network congestion prediction model is proposed. Experimental
verification shows that the model proposed in this study can effectively capture the spatiotemporal
variation characteristics of the network and has high prediction accuracy. This study provides strong
support for the optimization of network management decisions and provides new ideas and methods
for the development of future network prediction.

2. Related Work

2.1 Time Series Regression Model

The application of time series regression models in network prediction has received widespread
attention. Traditional regression analysis methods, such as linear regression and polynomial
regression, were once the most commonly used tools in network prediction [8]. These methods
attempt to establish a simple relationship between time and network by linearly modeling historical
network data. However, network is usually nonlinear and time-varying, and linear regression
methods often cannot effectively capture complex spatiotemporal relationships. Therefore,
nonlinear regression models based on time series have gradually become a hot topic of research. For



example, nonlinear regression methods such as support vector machine regression (SVR) and
decision tree regression (DTR) have been proposed and applied to network prediction. These
methods can better handle nonlinear relationships in network data and improve the accuracy of
prediction [9].

With the rise of deep learning technology, time series regression models based on neural networks
have gradually become the mainstream method for predicting networks. Among them, long short-
term memory networks (LSTMs), as a special type of recurrent neural network (RNN), have
excellent time series modeling capabilities and can effectively capture long-term dependencies in
data. The application of LSTM models in network prediction has achieved remarkable results.
Many studies have shown that LSTM can overcome the shortcomings of traditional regression
models in dealing with long-term dependencies and provide more accurate network predictions.
Especially in complex network scenarios, LSTM can adaptively learn the spatiotemporal changes of
network in historical data with its dynamic learning ability, thus providing more accurate
predictions for network management [10].

In addition to LSTM, time series regression methods based on hybrid models have also received
increasing attention in recent years. This type of method combines different regression models to
make up for the shortcomings of a single model. For example, some studies combine LSTM with
other machine learning methods, such as convolutional neural networks (CNN) or random forests
(RF), to form hybrid regression models. These hybrid models can improve the accuracy of network
prediction while capturing temporal dependencies and spatial features. In addition, regression
models based on ensemble learning have gradually become a trend, which improves the overall
prediction performance by combining multiple weak regression models. With the fusion of multiple
models, the accuracy and robustness of network prediction have been significantly improved,
especially in complex and dynamically changing network environments.

2.2 Association rule algorithms

As a classic data mining technology, association rule algorithms have been widely used in various
fields, especially in market basket analysis, to discover purchase patterns between commodities.
The core idea of the algorithm is to reveal frequently occurring item sets and their potential
correlations by analyzing the relationships between items in the data. In network prediction,
association rule algorithms can help us discover the potential relationships between networks in
different time periods and locations. For example, high network may occur in certain gateways
during certain periods, which may be related to specific network events or external environments.
By mining these hidden association rules, it can provide a powerful reference for network
management departments to predict network changes in advance and optimize network scheduling
and control strategies [11].

With the increasing complexity and multi-dimensionality of network data, traditional association
rule algorithms face great challenges in processing high-dimensional data. To overcome this
problem, researchers have proposed improved and extended association rule algorithms, such as
multi-level association rules and time series association rules [12]. These methods not only consider
the direct relationship between items but also introduce additional dimensions such as time and
space, thereby more comprehensively reflecting the dynamic changes of the network. For example,
time series association rules can help us discover the law of network changes over time and predict
the network status at a certain moment in the future. These extended algorithms have high
flexibility and accuracy when processing network data and can effectively improve the effect of
network congestion prediction.

In addition to traditional association rule algorithms, in recent years, association rule mining
methods based on deep learning have gradually attracted the attention of researchers. Deep learning
methods can automatically extract deep features in network data and further improve the ability to
discover association rules by learning complex nonlinear relationships. In particular, combined with



advanced technologies such as autoencoders and graph neural networks (GNNs), deep learning can
handle multi-dimensional, time-varying, and complex correlations in network data. For example,
association rule mining methods based on deep learning can capture the complex relationships
between different network patterns and provide more accurate input for subsequent network
predictions. By combining deep learning and traditional association rule algorithms, researchers can
propose more intelligent network prediction models to further improve the efficiency and accuracy
of network management.

3. Method

This study proposes a network congestion prediction method that combines association rules and
LSTM, aiming to improve the accuracy and reliability of network congestion prediction by mining
the potential correlation in network data and using the LSTM model to model time series data. The
method is divided into two main parts: first, frequent item sets in network data are mined through
association rule algorithms, and prediction models are built based on these rules; then, the extracted
features are modeled using the LSTM model to predict future networks. The model architecture is
shown in Figure 1.
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Figure 1. Overall model architecture

3.1 Association rule algorithms

Association rule mining aims to discover frequent item sets and their potential associations in
network flow data. Assume that the network flow data setis D ={D,,D,,...,D,}, where each D,

represents the network status in a certain period of time. In order to mine the rules in network flow
data, first calculate the support Support(I) and confidence Confidence(I) ofitemset [ < D, as

shown in the following formula.
[{D;[1cD,}|
| D

Support(l) =

Among them, {D;|I < D,} represents all transactions in the data set that contain item set 7, and

| D] is the total number of transactions in the data set.
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Among them, I, and [, areitem sets, and Support(l, Ul,) represents the frequency of 7, and
1, appearing at the same time.

In this study, the association rule algorithm is mainly used to mine potential association rules
between different time periods, locations and network conditions. These rules will be used as input

features of the LSTM model to provide additional information for the time series prediction of
network flow.

3.2 LSTM Model

LSTM is a special recurrent neural network (RNN) that can effectively process and predict time
series data and is particularly suitable for capturing long-term dependencies. In network congestion
prediction, LSTM can predict network conditions in future periods by learning from historical
network flow data. Assume that the input data is X = {x,,x,,...,x;}, where each x, is the input

feature at time t.

The calculation process of LSTM includes the following main steps: input gate, forget gate, and
output gate.

Input gate: controls the update of current input data. The formula is as follows:
I, = O(VVz '[ht—l’xt] + bz)
Among them, i, is the output of the input gate, W, is the weight matrix, 4, is the hidden state

of the previous moment, x, is the input of the current moment, b, is the bias term, and o 1is the
sigmoid activation function.

Forget gate: controls how much past information is forgotten. The formula is as follows:
ft = O(Wf .[ht—l’xt]-l—bf)

Among them, f, is the output of the forget gate, W, and b, are the weight and bias terms of the

forget gate respectively.
Cell state update: Update the cell state. The formula is as follows:
¢ = ft "Coy 'tanh(VVc '[ht—laxt]+bc)

Among them, ¢, 1is the cell state at the current moment, c is the cell state at the previous

t—1
moment, W,  and b, are the weight and bias terms of cell state update, respectively, and tanh is

the hyperbolic tangent activation function.
Output gate: controls the output at the current moment. The formula is as follows:
o, =cW,-[h_,x]+b,)
Among them, o, is the output of the output gate, W, and b, are the weight and bias terms of the
output gate.

Final output: The final output of LSTM is the hidden state at the current moment, and the formula is
as follows:

h, = o, -tanh(c,)

Among them, tanh is the hyperbolic tangent activation function, which can ensure that the output
is between -1 and 1.



The LSTM model uses the historical information of network flow data to predict future network
conditions by continuously adjusting its weights and bias terms. In this study, the input of LSTM
not only includes historical network flow data but also combines the potential association
information obtained by association rule mining, thereby enhancing the model's ability to predict
the temporal changes of network flow.

3.3 Combining association rules and LSTM

In order to improve the accuracy of network congestion prediction, this study combines association
rule mining with the LSTM model. First, the association rule algorithm is used to extract frequent
item sets and their association rules from historical network data. These rules provide additional
input features for the LSTM model. Specifically, the support and confidence values of the
association rules can be used as one of the input features of the LSTM to help the model learn the
potential spatiotemporal laws, thereby improving the accuracy of the prediction.

Assume that R ={r,r,,...,7,} 1s an association rule set, and each rule 7, contains a condition part

and a conclusion part. During the training process of the LSTM model, the support and confidence
values of these rules can be combined to construct a new feature vector x', =[x,,s(#),s(r,),....s(r,)],

where s(r;) 1s the support or confidence value of rule 7. Using these new feature vectors as the
input of LSTM can help the model capture more complex network flow change patterns.

During the model training process, the mean square error (MSE) is used as the loss function to
optimize the model. The specific loss function is as follows:

L(6) = %Z O, -y

Among them, y, is the actual network flow value, »', is the predicted output of the LSTM model,

N is the total number of training samples, and & is the parameter of the LSTM model. By
minimizing the loss function, LSTM can fully combine the information extracted by the association
rules while learning the time series features, thereby improving the accuracy of network flow
prediction.

Finally, the network congestion prediction model combining association rules and LSTM can fully
mine the spatiotemporal correlations in network data and use deep learning methods to accurately
predict future network states, providing support for the decision-making of intelligent systems.

4. Experiment

4.1 Dataset Introduction

The network traffic dataset used in this study comes from an open Internet traffic monitoring
platform, which is provided by multiple network operators and data centers and covers network
traffic information in different regions around the world. The dataset is collected through network
monitoring equipment and includes multiple important network indicators, such as packet flow
(Packets per 5 minutes), average latency (Average Latency), bandwidth utilization (Bandwidth
Utilization), etc. The dataset is stored in the form of a time series, with data granularity accurate to
every 5 minutes, providing rich historical network traffic records, which is suitable for network
traffic prediction and congestion pattern analysis.



An important feature of this dataset is its high temporal resolution and wide spatial distribution,
allowing researchers to analyze network traffic change patterns in different time periods and
different geographical locations. In addition, the dataset also contains multiple external factors, such
as network events (such as holiday traffic surges), equipment failures, network maintenance, etc.,
which affect the dynamic changes of network traffic. Therefore, in the data processing stage, these
factors must be preprocessed to ensure the quality and consistency of the data. At the same time, in
order to improve the generalization ability of the model, this study uses sliding window technology
to divide the original data into time series samples to better meet the training needs of deep learning
models.

In the data preprocessing process, missing values and outliers are first processed, such as using
linear interpolation to fill missing data and deleting obviously abnormal network traffic records.
Secondly, continuous variables such as traffic, latency, and bandwidth occupancy are normalized to
improve the stability of model training. In addition, in order to combine association rule mining
technology, this study also discretized the data and divided the network status into different
congestion levels, such as "normal", "mild congestion", and "severe congestion". In this way, the
dataset can be used not only for time series prediction models but also for association rule mining,
thereby providing more explanatory input features for the LSTM model.

In addition, this paper shows the trend of network traffic over time, where the traffic is affected by
periodic changes, as shown in Figure 2.

160 Traffic Flow Trend Over Time
—— Traffic Flow

=
'S
o

120

100t

(o]
o

()]
o

Traffic Flow (vehicles per 5 min)

40

0 20 40 60 80 100
Time Step

Figure 2. network flow trends

At the same time, the distribution of different network congestion states (unblocked, moderately
congested, severely congested, and extremely congested) is shown, which can be used to analyze
the frequency and proportion of different congestion levels, as shown in Figure 3.
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Figure 3. Congestion status distribution map

4.2 Experimental setup

The experiments in this study were conducted in a high-performance computing environment to
ensure the efficient training and testing of deep learning models. The experimental hardware
platform includes a server equipped with an NVIDIA RTX 3090 GPU, 64GB RAM, and an AMD
Ryzen 9 5950X processor, and the operating system is Ubuntu 20.04. PyTorch 2.0 is used as the
deep learning framework, and CUDA 11.7 is used for GPU acceleration. Pandas and NumPy are
used for data cleaning and feature engineering in the data preprocessing stage, and Matplotlib is
used for data visualization. AdamW is used as the optimizer in the experiment, combined with the
cosine annealing learning rate scheduling strategy, the initial learning rate is set to 0.001, the weight
decay is 0.01, the batch size is set to 64, and the maximum training round is 200 rounds to ensure
the stable convergence of the model.

4.3 Comparative Experiment

In order to verify the effectiveness of the network congestion prediction model based on association
rules and LSTM proposed in this study, we conducted comparative experiments with a variety of
benchmark models, including traditional time series regression models (such as ARIMA and SVR),
classic deep learning models (such as Vanilla LSTM and GRU), and current more advanced hybrid
models (such as CNN-LSTM and Transformer-based prediction models). The core goal of the
experiment is to evaluate the prediction accuracy, computational efficiency, and generalization
ability of each model in different network scenarios. During the experiment, we conducted
evaluations during peak hours, off-peak hours, and emergencies to examine the adaptability of each
model in a complex network environment. The experiment uses mean square error (MSE), root
mean square error (RMSE), and mean absolute percentage error (MAPE) as evaluation indicators to
comprehensively measure the prediction error and stability of each model. Through these
comparative experiments, we can more clearly analyze the advantages and limitations of various
models in network flow prediction tasks, and provide data support for further optimization of the
model.



Table 1: Comparative experiment

Model MSE RMSE MAPE Calculation time

ARIMA[13] 35.42 5.95 12.3 1.45

SVR [14] 28.76 5.36 10.8 2.71
Vanilla LSTM [15] 18.92 4.35 8.7 3.12

GRU [16] 17.65 4.20 8.1 2.98
CNN-LSTM [17] 15.84 3.98 7.5 4.52
Transformer [18] 14.32 3.78 6.9 5.87

Ours 12.51 3.54 5.8 3.79

From Table 1, it can be seen that there are significant differences in the performance of different
models in the network flow prediction task. Traditional statistical methods such as ARIMA
performed poorly in all evaluation indicators, with an MSE of 35.42, an RMSE of 5.95, and a
MAPE of 12.3%. This shows that ARIMA has great limitations in processing complex nonlinear
network data and is only suitable for short-term linear trend prediction. In contrast, SVR uses the
support vector regression method to model the data more complexly, with the MSE reduced to
28.76 and the RMSE also reduced. However, since SVR cannot effectively capture long-term
dependencies, the prediction error is still high, and the calculation time (2.71 seconds) is long,
indicating that its application in large-scale network data scenarios is limited.

Deep learning models have shown strong advantages in network flow prediction. Vanilla LSTM
and GRU, due to their recurrent neural network (RNN) architecture, can more effectively capture
long-term dependencies in time series, reducing MSE to 18.92 and 17.65, respectively, and MAPE
to 8.7% and 8.1%. In addition, the CNN-LSTM model combined with CNN for feature extraction
further improved the prediction accuracy, with MSE reduced to 15.84 and MAPE reduced to 7.5%.
Transformer, as the most advanced time series modeling method, achieved the best performance
among all benchmark models, with an MSE of 14.32, an RMSE of 3.78, and a MAPE of only 6.9%.
However, its long computation time (5.87 seconds) indicates that Transformer's disadvantage in
computational complexity may lead to higher computational costs in practical applications.

The "association rules + LSTM" method proposed in this study outperformed the baseline model in
all evaluation indicators, with MSE reduced to 12.51, RMSE only 3.54, and MAPE reduced to 5.8%.
Compared with Transformer, it improved the prediction accuracy while optimizing the calculation
time to 3.79 seconds, achieving a good balance. This shows that by combining association rules to
mine potential patterns in network data and inputting them as features into LSTM for time series
prediction, the prediction ability of the model can be effectively improved while reducing the
calculation cost, making it more suitable for actual intelligent transportation systems.

4.4 Hyperparameter sensitivity experiments

Next, a hyperparameter sensitivity experiment is given. The experiment mainly focuses on the
optimizer and learning rate. First, the experimental results of the learning rate are given, as shown
in Table 2.

Table 2: Learning rate experiment results

LR MSE RMSE MAPE
0.005 18.72 4.33 8.5




0.003 15.64 3.95 7.2
0.002 13.87 3.72 6.3

0.001 12.51 3.54 5.8

The experimental results show that the choice of learning rate (LR) has a significant impact on the
prediction performance of the model. At a higher learning rate of 0.005, the MSE is 18.72, the
RMSE reaches 4.33, and the MAPE is as high as 8.5%, indicating that the model may oscillate
during the training process and it is difficult to converge stably, resulting in a large prediction error.
This shows that at a larger learning rate, although the model can quickly update parameters, it may
not be able to fully capture the temporal characteristics of network flow data, resulting in weak
generalization ability. At the same time, a higher learning rate may cause the model to skip the
optimal solution area and make it difficult to find the global optimal parameter configuration.

As the learning rate decreases, the prediction error of the model gradually decreases. When the
learning rate is reduced to 0.003 and 0.002, the MSE drops to 15.64 and 13.87 respectively, and the
MAPE also drops from 7.2% to 6.3%, indicating that the convergence effect of the model at a
smaller learning rate is more stable. At this point, the model can learn the changing pattern of
network flow more fully and adjust parameters more smoothly during training, reducing the risk of
overfitting. However, in the case of 0.002, although the error is further reduced, the convergence
speed is relatively slow, and more training iterations may be required to achieve the optimal
performance.

When the learning rate is set to 0.001, the experimental results are the best, with MSE reduced to
12.51, RMSE to 3.54, and MAPE to only 5.8%, indicating that the model can be stably trained at
this learning rate and effectively capture the temporal characteristics of network flow. A lower
learning rate helps the model to gradually optimize parameters during training, so that the loss
function converges to a better solution, while avoiding unstable convergence problems caused by
excessive gradient step size. Therefore, this study finally selected 0.001 as the optimal learning rate
to ensure the stability and high prediction accuracy of the model while maintaining a reasonable
computational overhead.

Secondly, the experimental results of different optimizers are given. The experimental results are
shown in Table 3.

Table 3: Optimizer experiment results

Optimizer MSE RMSE MAPE
Adagrad 18.95 4.35 8.7
SGD 16.72 4.09 7.9
AdamW 13.84 3.72 6.5
Adam 12.51 3.54 5.8

The Table 3 results show that there are obvious differences in the performance of different
optimizers in the network flow prediction task. Adagrad has certain advantages in processing sparse
data due to its adaptive learning rate, but it is prone to the problem of rapid learning rate decay in
time series tasks, which makes the model unable to continuously optimize. The final MSE is 18.95,
RMSE is 4.35, and MAPE is as high as 8.7%. This shows that Adagrad is difficult to fully learn the
time series characteristics of network flow in this task, the prediction error is large, and the
convergence effect is not ideal. Similarly, SGD, as the most basic optimization algorithm, has high
computational efficiency, but due to its simple gradient update method, it is easy to fall into local



optimality, resulting in slow model convergence. The final MSE dropped to 16.72, RMSE was 4.09,
and MAPE was still high at 7.9%. This shows that there is still a lot of room for optimization in the
performance of SGD when processing complex time series data.

In contrast, AdamW combines Adam's adaptive learning rate strategy and introduces L2
regularization during the weight update process, thereby improving the convergence stability of the
model. The experimental results show that AdamW's MSE is reduced to 13.84, RMSE is 3.72, and
MAPE is reduced to 6.5%, indicating that the optimizer effectively reduces the prediction error
while ensuring a faster convergence speed. In addition, AdamW can maintain a relatively stable
learning rate during long-term training and will not decay prematurely like Adagrad, which enables
the model to learn the long-term pattern of network flow changes more deeply. However, in terms
of computational efficiency, AdamW does not have a significant advantage over Adam, so it is
necessary to further weigh the computational cost and model performance.

In the end, the Adam optimizer performed best in this experiment, with its MSE reduced to 12.51,
RMSE of only 3.54, and MAPE of only 5.8% as well. This shows that Adam can adjust the learning
rate more stably when optimizing deep learning models, making the gradient update smoother,
thereby improving the convergence and prediction accuracy of the model. In addition, Adam has
good robustness when processing nonlinear and complex time series data, and can more effectively
capture the time-varying characteristics of network flow. Therefore, considering the comprehensive
computational efficiency and prediction accuracy, Adam was finally selected as the optimizer for
this study to ensure that the model can achieve the best prediction performance while achieving
stable convergence.

4.5 Ablation experiment

In order to further verify the effectiveness of each key module in the model proposed in this study,
we designed an ablation experiment to gradually remove different components and evaluate their
impact on the final prediction performance. Specifically, the core of the model is time series
modeling by LSTM, combined with association rule mining to extract features. Therefore, this
experiment examines the use of only LSTM, without adding association rule features, and the
impact of different feature selection strategies on model performance. The experiment uses the
same dataset, hyperparameter settings, and training environment to ensure the fairness of the
comparison, and is evaluated through indicators such as mean square error (MSE), root mean square
error (RMSE), and mean absolute percentage error (MAPE). The results of the ablation experiment
can reveal the contribution of each module to the overall prediction performance and provide
theoretical support for the optimization of the model.

Table 4: Ablation experiment results

Optimizer MSE RMSE MAP
E
Full Model (Ours: LSTM + Association Rules) 12.51 3.54 5.8
Without Association Rules 15.23 3.90 7.1
Without LSTM (Only Association Rules + Linear 18.46 4.30 8.5
Regression)
Without Feature Engineering (Raw Data to LSTM) 16.78 4.12 7.8

In the case of (100% association rules), the MSE is 12.51, the RMSE is 3.54, and the MAPE is only
5.8%, which is the best performance. This shows that combining LSTM for time series modeling
and association rule mining features can effectively improve the accuracy of network flow
prediction. When the association rules are removed and only LSTM is used for prediction, the MSE



rises to 15.23, the RMSE increases to 3.90, and the MAPE increases to 7.1%, which shows that
association rules play an important role in mining network patterns and providing prior knowledge.
Models without association rules can only rely on LSTM for end-to-end learning, but lack potential
causal information in the data, so the prediction accuracy decreases.

Further removing LSTM and using only association rules and linear regression for prediction, the
MSE significantly increases to 18.46, the RMSE increases to 4.30, and the MAPE also increases to
8.5%, indicating that LSTM plays a vital role in time series modeling. Although association rules
can provide static relationships of network patterns, they cannot capture complex time dependencies,
and the linear regression model has weak expressive power and cannot adapt to nonlinear and
dynamically changing network flows, so the overall prediction effect is greatly reduced. In addition,
when feature engineering is removed and the original data is directly input into LSTM training, the
MSE is 16.78 and the MAPE is 7.8%, which is significantly higher than the error of the complete
model, indicating that feature engineering (such as data normalization, time window sliding, and
associated feature extraction) plays an important role in improving the learning efficiency and
stability of the model.

Overall, the complete model (LSTM + association rules) performs best in all experimental
indicators, proving that association rules can effectively improve the prediction ability of LSTM,
and feature engineering also makes an important contribution to the optimization of model
performance. As a deep learning model, LSTM can fully learn time series features, while
association rules supplement implicit pattern information, so that the model can not only predict
future trends based on historical data but also combine the inherent correlation in network data,
thereby further optimizing the prediction accuracy.

5. Conclusion

This study proposes a network congestion prediction method based on association rules and LSTM,
aiming to fully explore the temporal dependency and potential patterns of network traffic data and
improve prediction accuracy. Through experimental verification, we found that association rules
can effectively extract the correlation between different network factors and provide LSTM with
richer input features so that the model has stronger explanatory power when predicting network
traffic. At the same time, LSTM, as a powerful time series modeling tool, can capture the long-term
change trend of network traffic. When combined with association rules, the prediction performance
of the model is significantly improved. Experimental results show that this method outperforms
traditional statistical methods, pure LSTM models, and other deep learning benchmark models in
multiple evaluation indicators (such as MSE, RMSE, and MAPE), proving the application value of
this research method in the field of Internet of Everything.

In the ablation experiment, we further analyzed the contribution of different modules to the model
performance. The results show that the synergy of association rules and LSTM is the key factor in
improving the performance of the model, and the optimization of feature engineering also
significantly affects the final prediction accuracy. When the association rules or feature engineering
are removed, the model error increases significantly, indicating that these modules play an
important role in learning the complex change pattern of network traffic. In addition, we also
studied the effects of different optimizers and learning rates and found that the Adam optimizer and
a smaller learning rate (0.001) help improve the stability and convergence speed of the model,
thereby further optimizing the prediction effect. These experimental results not only verify the
effectiveness of the research method but also provide a reference for the design of future network
prediction models.

Although this study has achieved certain results, there are still some issues that deserve further
study. First, the current method relies on historical data and association rules for modeling. In the
future, more external data, such as accident information, social media data, etc., can be combined to



improve the comprehensiveness and real-time nature of the prediction. Secondly, this study mainly
uses LSTM for time series modeling. In the future, more advanced time series prediction methods,
such as Transformer or hybrid deep learning models, can be explored to further improve the
prediction ability of the model. In addition, the existing methods mainly focus on the network
traffic prediction of a single road section. In the future, they can be extended to the prediction of
multiple road sections or the entire network to improve the applicability of the model in complex
network environments. Future research can further explore the application of federated learning and
reinforcement learning in network prediction to improve the privacy protection and adaptive
optimization capabilities of the model.

References

[1] YuS, Peng J, Ge Y, et al. A traffic state prediction method based on spatial-temporal data mining of
floating car data by using autoformer architecture[J]. Computer-Aided Civil and Infrastructure
Engineering, 2024.

[2] Wang L, Ning Z, Cheng Y, et al. Data mining of encrypted network traffic for adult content and
gambling Android applications[C]//Third International Conference on Electronic Information
Engineering, Big Data, and Computer Technology (EIBDCT 2024). SPIE, 2024, 13181: 1359-1363.

[3] Zhang W, Lei X. Network traffic anomaly detection based on deep learning: a review[J]. International
Journal of Computational Science and Engineering, 2024, 27(3): 249-257.

[4] Zheng M, Ma K, Wang F, et al. Which standard classification algorithm has more stable performance
for imbalanced network traffic data?[J]. Soft Computing, 2024, 28(1): 217-234.

[5] PengJ, Guo C, Ping Y, et al. SNDMI: Spyware network traffic detection method based on inducement
operations[J]. Computers & Security, 2024, 140: 103806.

[6] Rzayev B, Uvaliyeva I, Beldeubayeva Z. The Combined Method for Detecting Anomalies in the
Enterprise Telecommunication Networks[C]//2024 International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA). IEEE, 2024: 1-4.

[7] Wang X, Wei W, Liu C, et al. Network Traffic Classification with Small-Scale Datasets Using
Ensemble Learning[C]//ICC 2024-1EEE International Conference on Communications. IEEE, 2024: 1-6.

[8] Mahalakshmi V, John R, Samuel B E, et al. Exchange matching algorithm for low-complexity traffic
scheduling for 5G fronthaul networks|[M]//Networks Attack Detection on 5G Networks using Data
Mining Techniques. CRC Press, 2024: 127-142.

[9] Luo X, Zhu C, Zhang D, et al. DSTAN: attention-enhanced dynamic spatial-temporal network for traffic
forecasting[J]. World Wide Web, 2025, 28(1): 15.

[10] Jeremiah S R, Chen H, Gritzalis S, et al. Leveraging application permissions and network traffic
attributes for Android ransomware detection[J]. Journal of Network and Computer Applications, 2024,
230: 103950.

[11] Yang X, Angkawisittpan N, Feng X. Analysis of an enhanced random forest algorithm for identifying
encrypted network traffic[J]. EUREKA: Physics and Engineering, 2024 (5): 201-212.

[12] Yun T, Lee K, Yun S, et al. An Offline Meta Black-box Optimization Framework for Adaptive Design
of Urban Traffic Light Management Systems[C]//Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 2024: 6202-6213.

[13] Jiang Q. Communication network security situation analysis based on time series data mining
technology[J]. Open Computer Science, 2024, 14(1): 20230104.

[14] Jiang H, Wei Y, Mei L, et al. Multiscale Characteristics and Connection Mechanisms of Attraction
Networks: A Trajectory Data Mining Approach Leveraging Geotagged Data[J]. Chinese Geographical
Science, 2024: 1-15.

[15] Umamaheswari N, Kumutha K, Kalaivani M S, et al. Backpropagation Shuffled Leaping Neural
Network Implementation in Classification of DDoS Packet Flow Traffic in Data Mining[J]. SN
Computer Science, 2024, 5(8): 1-7.

[16] Luo J. Traffic Analysis and Optimal Control Technology in Computer Network[C]//2024 International
Conference on Power, Electrical Engineering, Electronics and Control (PEEEC). IEEE, 2024: 803-808.



[17] Zuo C, Zhang X, Zhao G, et al. PCR: A Parallel Convolution Residual Network for Traffic Flow
Prediction[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2025.

[18] Bleijerveld B. A Scalable Recommendation System for Selective Retention of DDoS Traffic: Entropy-
Based Network Traffic Analysis[D]. University of Twente, 2024.



	A Hybrid Network Congestion Prediction Method Inte
	Yingnan Deng
	Georgia Institute of Technology, Atlanta, USA
	yingnand0523@gmail.com
	Abstract: With the acceleration of the Internet of
	Keywords: Network congestion prediction; Data mini
	1.Introduction
	2.Related Work
	2.1 Time Series Regression Model
	2.2 Association rule algorithms

	3.Method
	Association rule mining aims to discover frequent 
	Among them,  represents 
	Among them,  and 
	In this study, the association rule algorithm is m
	3.2 LSTM Model
	LSTM is a special recurrent neural network (RNN) t
	The calculation process of LSTM includes the follo
	Input gate: controls the update of current input d
	Among them,  is the outp
	Forget gate: controls how much past information is
	Among them,  is the outp
	Cell state update: Update the cell state. The form
	Among them,  is the cell
	Output gate: controls the output at the current mo
	Among them,  is the outp
	Final output: The final output of LSTM is the hidd
	Among them,  is the hype
	The LSTM model uses the historical information of 
	3.3 Combining association rules and LSTM
	In order to improve the accuracy of network conges
	Assume that  is an assoc
	During the model training process, the mean square
	Among them,  is the actu
	Finally, the network congestion prediction model c

	4.Experiment
	4.1 Dataset Introduction
	The network traffic dataset used in this study com
	An important feature of this dataset is its high t
	In the data preprocessing process, missing values 
	In addition, this paper shows the trend of network
	4.2 Experimental setup
	4.3 Comparative Experiment 
	4.4 Hyperparameter sensitivity experiments
	4.5 Ablation experiment

	5.Conclusion
	References


