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Abstract: This paper proposes a time-series nested reinforcement learning risk control algorithm for
nonlinear financial markets, aiming to solve the shortcomings of traditional methods in complex dynamic
market environments. By introducing a time series nested structure, the algorithm can jointly model short-
term fluctuations and long-term trends, and accurately capture the multi-level dynamic characteristics of the
market. At the same time, combined with the multi-objective optimization mechanism, a balance between
maximizing returns and minimizing risks is achieved, significantly improving the applicability of risk
management and the flexibility of strategies. Experimental results show that the algorithm in this paper
performs well in income optimization, risk control, and dynamic adaptability, especially in high-volatility
markets and trend reversal scenarios, showing strong robustness and adaptability. Further analysis of the
return and risk trade-off curve verified the effectiveness of the multi-objective optimization strategy and
provided scientific risk management solutions for different market conditions and investor needs. This
research provides a new technical framework for dynamic risk control in complex financial markets and also
lays a theoretical foundation for future cross-market and multi-asset portfolio research.
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1. Introduction
In the financial market, risk control is an important part of achieving stable investment returns, especially in a
nonlinear market environment, where the complexity and uncertainty further increase the difficulty of risk
management. Traditional risk control methods usually rely on models based on linear assumptions, such as
mean-variance theory or VaR method. However, these methods show great limitations when facing the
characteristics of nonlinear financial markets, and it is difficult to capture the potential complex dynamic
relationships and multi-level risk transmission mechanisms in the market. Therefore, designing a risk control
algorithm that can cope with nonlinear market environments is of great significance to risk management in
the financial field [1,2].
Reinforcement learning, as an algorithm based on intelligent decision-making, has received widespread
attention in the financial field in recent years. Unlike traditional methods, reinforcement learning can learn
optimal strategies through interaction with the environment and is particularly suitable for dealing with
dynamically changing complex systems. In the financial risk control scenario, reinforcement learning can
gradually optimize the investment portfolio or risk exposure strategy by modeling the interactive relationship
between market behavior, investment decisions, and risk management [3]. However, the standard
reinforcement learning framework usually assumes that the market state is stable, ignoring the multi-level



nonlinear dynamic characteristics that are widely present in the financial market, which makes it still have
room for improvement when dealing with high-dimensional complex financial data [4].
This paper proposes a time-series nested reinforcement learning risk control algorithm for nonlinear financial
markets, aiming to capture the multi-level dynamic characteristics in the market and solve the shortcomings
of traditional methods in dealing with nonlinear market environments. The algorithm embeds time series
features into the reinforcement learning framework, gradually extracts multi-level information of market
status through hierarchical modeling, and combines multi-objective optimization strategies to achieve better
risk control on the basis of balancing returns and risks. Specifically, the algorithm adds a time-nested
mechanism to the structure of basic reinforcement learning and improves the ability to understand nonlinear
market status by introducing joint modeling of short-term and long-term market dynamics, while
strengthening the adaptability to the complex evolution of risk factors [5].
In order to verify the effectiveness of the algorithm, this paper designs experiments based on real market data,
including risk control case analysis of the stock market and dynamic adjustment strategy research of multi-
asset portfolios. The experimental results show that the time-series nested reinforcement learning algorithm
proposed in this paper is significantly superior to existing methods in terms of risk control effect, strategy
optimization efficiency and return stability, especially in a market environment with violent nonlinear
fluctuations. It shows higher robustness and applicability. By accurately capturing multi-level market
dynamics, the algorithm can effectively reduce systemic risks while achieving steady growth in returns,
providing a new technical means for risk management in a complex financial market environment.
In summary, the research in this paper has made important innovative contributions to the risk management
of nonlinear financial markets both in theory and practice. By introducing the time series nesting mechanism,
the algorithm successfully captures the nonlinear dynamic characteristics of the market and expands new
ideas for the application of reinforcement learning methods in the financial field. Future research will further
explore the applicability of this algorithm in cross-market and cross-asset class risk management, and at the
same time combine other intelligent technologies (such as generative models and causal inference) to build a
more comprehensive intelligent financial risk control system to provide strong support for the stable
development of complex financial markets.

2. Related Work
In recent years, research in the field of financial risk control has continued to deepen, especially in nonlinear
market environments, and the demand for dynamic risk management methods has gradually increased.
Traditional risk control methods such as mean-variance theory and value-at-risk (VaR) methods have certain
shortcomings in capturing market volatility and nonlinear characteristics. These methods usually assume that
the market is static or changes linearly, and it is difficult to adapt to the multi-level complex dynamics in
modern financial markets [6]. To address this problem, some studies have attempted to introduce methods
based on time series modeling, such as GARCH models and Copula theory, to improve the ability to analyze
nonlinear risks. However, these methods have poor adaptability and it is difficult to dynamically adjust
strategies to cope with rapidly changing market environments [7].
Reinforcement Learning (RL) has received increasing attention in financial risk management in recent years
due to its dynamic optimization capabilities. Unlike traditional optimization methods, RL can learn optimal
strategies through interaction with the environment, which is particularly suitable for non-static financial
scenarios. For example, Q-Learning and Deep Q Network (DQN) have been applied to portfolio optimization
and risk management, demonstrating certain advantages in dynamic market environments. However, the
standard reinforcement learning framework focuses on a single time scale or a single goal, ignoring the multi-
level dynamic characteristics and multi-objective trade-off requirements in the financial market. This
limitation means that the applicability of existing RL methods in complex nonlinear markets still needs to be
further improved [8]. Jiang et al. [9] introduced a Q-learning-based approach to dynamically control risk and



optimize asset allocation in financial markets. Their work demonstrated the capability of RL to adapt to
changing market environments and optimize decisions under uncertainty. However, traditional RL
frameworks often assume a relatively stable market state and are limited in their ability to model multi-level
market dynamics. Expanding on this, Huang et al. [10] explored RL in combination with ensemble models
for risk assessment in financial derivatives. This hybrid approach showed promise in improving prediction
accuracy and robustness, but the lack of explicit mechanisms to model the interaction between short-term
market fluctuations and long-term trends limited its effectiveness in highly dynamic and nonlinear markets.
These studies underscore the potential of reinforcement learning in risk management, but also highlight the
need for more sophisticated structures to handle the complex temporal relationships and nested dynamics
inherent in financial systems.
Deep learning methods have also played a crucial role in financial data analysis, enabling effective handling
of high-dimensional, time-series data. Feng et al. [11] proposed a collaborative optimization framework using
ResNeXt, which enhanced the predictive power of financial data mining by focusing on feature extraction
and optimization. Similarly, Xu et al. [12] presented a multi-source data-driven LSTM framework, which
improved the accuracy of stock price prediction and volatility analysis by effectively leveraging diverse data
sources. These methods demonstrated the strength of neural networks in capturing temporal dependencies
and nonlinearity in financial data. However, most existing deep learning models are designed to extract
patterns from time-series data in isolation, often neglecting the interaction of features across different
temporal scales. This limits their ability to simultaneously capture the short-term volatility and long-term
trends crucial for robust financial risk control.
Graph neural networks (GNNs) have recently gained attention for their ability to model complex
relationships and dependencies in financial systems. Zhang et al. [13] proposed a robust GNN framework for
analyzing stability in dynamic networks, providing insights into the interactions and dependencies among
various financial entities during periods of market instability. Yao et al. [14] expanded this line of work by
employing hierarchical GNNs for stock type prediction, effectively capturing intricate relationships between
stocks and other market factors. While these methods excel at modeling relational data and uncovering
structural dependencies within financial markets, they often lack the capability to incorporate temporal
dynamics, which are essential for managing risk in nonlinear and time-variant financial environments.
Hybrid architectures that combine different deep learning paradigms have also shown promise in enhancing
financial market analysis. Wu et al. [15] developed a CNN-GRU hybrid model for integrative analysis of
financial market sentiment, demonstrating its ability to predict risk and provide alerts by combining the
strengths of convolutional and recurrent neural networks. By incorporating sentiment analysis into risk
prediction, the model achieved improved accuracy and timeliness. However, hybrid approaches such as this
often focus on single-level dynamics and do not address the multi-level, nested temporal structures that are
characteristic of nonlinear financial markets. A more comprehensive framework that integrates hierarchical
temporal modeling and dynamic adaptability is needed to fully address these limitations.
Feature selection and engineering remain critical components in financial modeling, especially for time-series
data. Huang and Yang [16] conducted an empirical study on feature redundancy in time-series datasets, with
a specific focus on mortgage default prediction. Their findings revealed the paradoxical nature of feature
redundancy, emphasizing the need for advanced feature engineering techniques to extract meaningful insights
from high-dimensional financial data. While their work primarily focuses on credit risk modeling, the
challenges and solutions identified are highly relevant to broader financial applications, including dynamic
risk control. The insights from their study suggest that carefully engineered feature selection mechanisms can
significantly enhance the robustness of financial modeling approaches, particularly in complex and noisy
environments.
The works reviewed above have collectively laid a solid foundation for advancements in financial risk
control, portfolio optimization, and market analysis. However, most of these approaches either focus on static
or single-level market dynamics, neglecting the multi-level and nonlinear interactions that define real-world



financial systems. Furthermore, while reinforcement learning and deep learning methods have shown
significant promise in adapting to changing market conditions, their integration with hierarchical temporal
modeling remains underexplored. The proposed time-series nested reinforcement learning framework
addresses these gaps by embedding hierarchical time-series features into the reinforcement learning process.
This enables the simultaneous modeling of short-term market fluctuations and long-term trends, capturing the
complex interactions between different temporal scales. The integration of a multi-objective optimization
mechanism further enhances the framework’s ability to balance risk minimization with return maximization,
ensuring flexibility and adaptability across diverse market conditions.

3. Method
This paper proposes a time-series nested reinforcement learning risk control algorithm for nonlinear financial
markets. By combining time-series feature modeling and reinforcement learning framework, it realizes
comprehensive analysis and optimization of multi-level market dynamics. The algorithm aims to capture the
joint characteristics of short-term fluctuations and long-term trends in financial markets while achieving a
balance between returns and risks in dynamic risk control. The reinforcement learning architecture is shown
in Figure 1.

Figure 1. Network architecture diagram
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]1,0[ is the discount factor, which is used to balance the weight of current returns and future returns.
Different from the traditional reinforcement learning method, this paper introduces a time series nesting
mechanism in state modeling, dividing the market state into short-term state short

ts and long-term state long
ts ,

which represent short-term volatility characteristics and long-term trend characteristics respectively. Through
this mechanism, the algorithm can capture the multi-level dynamic characteristics of the market.



In order to extract short-term and long-term features, this paper adopts a time nested structure based on
sliding windows. The short-term state consists of the data of the most recent k time steps, expressed as:
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Where tx is the market observation at time t. The long-term state is modeled by the accumulated historical
features, represented as )( :0 t
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implemented by LSTM or other time series models. The final state is composed of the joint representation of
short-term and long-term features:
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In the policy optimization stage, this paper adopts a policy gradient-based reinforcement learning method to
improve the performance of the policy by performing gradient updates on the parameter  of the policy
function  . The gradient update formula is:
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),( tt asQ represents the state-action value function, which measures the long-term benefits of taking
action ta in state ts . In order to further improve the adaptability of the algorithm to market fluctuations,
this paper adds risk adjustment factors to the reward function, such as the Sharpe ratio or downside risk
indicator, to ensure that the strategy effectively controls risks while pursuing returns.
In addition, this paper designs a multi-objective optimization strategy to further improve the applicability of
the algorithm in a complex market environment by dynamically balancing risk and return. The core of multi-
objective optimization is to construct a weighted reward function, representing the return and risk as rewardR
and riskR respectively. The final reward function is:
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Among them,  and  are weight parameters used to adjust the priority of return and risk.

In summary, the algorithm in this paper can effectively capture the nonlinear characteristics of the market in a
dynamic market environment through time-series nested modeling, combined with reinforcement learning
and multi-objective optimization, and design an optimization strategy that has both return and risk control
capabilities. The experimental results verify the effectiveness of the algorithm and provide an innovative
solution for risk management in nonlinear financial markets.

4. Experiment
4.1 Datasets
This article uses Kaggle Financial Dataset as the experimental data set. This data set encompasses historical
transaction data pertaining to multiple international stock markets. It includes pivotal indicators such as daily
opening price, closing price, highest price, lowest price, and trading volume. The dataset spans an extensive
time period and exhibits significant temporal complexity. The data set also contains indicators related to
market risk, such as volatility, interest rate changes, and credit spreads, which can reflect the multi-
dimensional dynamic characteristics of financial markets and provide a rich experimental basis for testing
risk control algorithms.
The distinguishing features of the dataset are the inclusion of multiple asset classes (such as stocks, bonds,
and currencies), as well as the correlations between different markets. This diverse feature can well simulate
nonlinear dynamic relationships in real financial markets, providing an ideal verification scenario for the



time-series nested reinforcement learning algorithm proposed in this article. In addition, there is a certain
degree of noise and abnormal fluctuations in the data set, which further increases the complexity of risk
management and provides strong support for testing the robustness of the algorithm.
In data preprocessing, this paper normalizes the original data and uses the sliding window method to
construct time series features in order to capture the joint dynamics of short-term fluctuations and long-term
trends. For outliers in the data, this article adopts a filtering method based on statistical rules to improve the
training effect of the model. By using this data set, this paper can comprehensively verify the applicability
and effectiveness of the proposed algorithm in a complex market environment, while ensuring that the
experimental results have high practical significance and promotion value.
4.2 Experimental Results
This paper first conducted a nonlinear market dynamic adaptability analysis experiment. Nonlinear market
dynamic adaptability analysis is an important experiment to verify the algorithm's ability to capture multi-
level dynamic characteristics in complex financial markets. This paper constructs different nonlinear market
scenarios to test the proposed time-series nested reinforcement learning algorithm's ability to capture market
state changes and its dynamic adaptability. By analyzing the accuracy of market state transitions and the
flexibility of strategy optimization, the algorithm's performance in dealing with nonlinear characteristics and
rapidly changing market environments is evaluated. The experimental results are shown in Figure 2.

Figure 2. Nonlinear Market Dynamics: Adaptation Analysis
As can be seen from Figure 2, the three market scenarios respectively show the typical dynamic change
characteristics in nonlinear markets. The high volatility market has a large fluctuation range and changes
frequently. This scenario places high demands on the adaptability of risk control algorithms, especially the
need to accurately capture short-term volatility characteristics and quickly adjust strategies to cope with
drastic market changes.
The trend reversal market shows completely different characteristics. The first half of the trend shows a
gradual upward trend, while the second half turns to a downward trend. This nonlinear change pattern
requires the algorithm to have good trend recognition capabilities, especially in the detection and rapid
response of trend turning points. The time-series nested reinforcement learning algorithm proposed in this
paper can better capture trend changes and provide support for dynamic adjustment strategies by combining
short-term and long-term feature modeling.



The state fluctuations of the stable market are small, showing the characteristics of high stability. This market
environment places high demands on the robustness and stability of the algorithm. By integrating the
characteristics of multiple time scales, the algorithm in this paper can maintain good risk control effects in
stable markets while avoiding unnecessary fluctuations caused by over-adjustment of strategies.
Overall, the dynamic characteristics of the three market scenarios cover the common nonlinear characteristics
in financial markets. The experimental results show that the algorithm in this paper can adapt to different
types of market environments, has strong dynamic adjustment capabilities and adaptability, and performs
particularly well in high volatility and trend reversal markets. This verifies the advantages of the algorithm in
dealing with nonlinear market dynamics and also provides technical support for risk control in complex
market environments.
The effectiveness analysis of the time series nested structure aims to verify its advantages in capturing the
short-term volatility and long-term trend characteristics of the market. This paper designs comparative
experiments to compare the nested structure with the traditional single-time scale feature modeling method to
evaluate its performance in extracting multi-level market dynamic features. The focus is on analyzing the
accuracy of short-term features, the consistency of long-term trends, and the contribution of joint modeling to
strategy optimization to fully verify the effectiveness of the nested structure. The experimental results are
shown in Table 1.

Table 1: Experimental results

Model Short-term feature
accuracy (%)

Long-term trend
consistency (%)

Overall performance of
strategy (return/risk)

Single time scale model
(traditional approach) 75.3 82.1 1.25

Time Series Deep Model
(LSTM) 84.7 87.6 1.38

Time series nested structure
(method in this paper) 91.2 94.3 1.56

It can be seen from the experimental results in Table 1 that the time series nested structure proposed in this
article has significant advantages in multi-level market dynamic feature extraction and strategy optimization.
First of all, in terms of short-term feature accuracy, this method reaches 91.2%, which is significantly higher
than the traditional single time scale model (75.3%) and the time series depth model (LSTM, 84.7%). This
shows that the time series nested structure can more accurately capture the short-term fluctuation
characteristics in the market and provide more accurate input for dynamic strategy adjustment.
Secondly, the method in this paper also performs well in long-term trend consistency, reaching 94.3%, which
is 12.2% higher than the single time scale model and 6.7% higher than the LSTM. This shows that the nested
structure has a stronger ability in modeling the long-term dynamic characteristics of the market, can
effectively identify trend changes and reflect the overall direction of the market, and provides a more robust
foundation for risk management.
In terms of comprehensive strategy performance (revenue/risk ratio), the performance of this method is also
significantly better than other methods, reaching 1.56, which is 24.8% higher than the single time scale model
(1.25) and 13% higher than the LSTM (1.38). This result verifies the contribution of joint modeling of multi-
time scale features to strategy optimization, indicating that the time series nested structure can better balance
risks and returns and improve overall strategy performance.
Overall, the experimental results fully demonstrate the effectiveness and superiority of the time series nested
structure in capturing the short-term and long-term characteristics of the market and optimizing strategy
performance. Compared with traditional methods, this method not only improves the ability to extract market



dynamic characteristics, but also significantly enhances the risk control effect and return optimization
capabilities in complex market environments, providing dynamic risk management in nonlinear financial
markets. Innovative solutions.
Finally, this paper conducted a multi-objective optimization experiment. The multi-objective optimization
experiment aims to verify the performance of the algorithm in this paper in terms of the balance between
benefits and risks. By constructing a multi-objective reward function, maximizing benefits and minimizing
risks are used as joint optimization goals to test the performance of strategies under different weight
combinations. The experiment compares single-objective optimization with multi-objective optimization
methods to analyze their strategy adaptability and balance in a complex market environment. The
experimental results are shown in Figure 3.

Figure 3.Multi-Objective Optimization: Trade-Off Between Return and Risk
As can be seen from Figure 3, there is an obvious trade-off relationship between return and risk. As the risk
increases, the return gradually increases in certain intervals, but it is also accompanied by certain instability.
This phenomenon is in line with the general law in the financial market, that is, higher risks may bring higher
potential returns, but at the same time more precise strategy control is required to avoid excessive risk
exposure.
The red point on the curve represents the optimal balance point between return and risk in the optimization
process, at which the ratio of return to risk is maximized. This shows that the multi-objective optimization
method in this paper can effectively adjust the weights in a complex market environment to achieve the dual
goals of maximizing returns and minimizing risks. Compared with the single-objective optimization method,
the appearance of this point shows that multi-objective optimization is more suitable for strategy design in
nonlinear financial markets.
Overall, the experimental results verify the applicability and robustness of the multi-objective optimization
method proposed in this paper in a complex market environment. By constructing a trade-off curve, the
strategy performance under different optimization weight combinations can be intuitively displayed,
providing a clear reference for dynamic risk management in the financial market. At the same time, this
method can provide different investors with a flexible risk and return priority adjustment mechanism,
reflecting its practical application value.

5. Conclusion



This paper proposes a time-series nested reinforcement learning risk control algorithm for nonlinear financial
markets. By combining time-series feature nested modeling and multi-objective optimization strategies, it
achieves a dynamic balance of revenue maximization and risk minimization. Experimental results show that
this method performs well in capturing short-term market fluctuations and long-term trends, and has strong
adaptability and robustness in complex nonlinear market environments. Both in terms of comprehensive
performance in revenue optimization and risk control, it is significantly better than traditional methods and
existing deep learning models.
By introducing a multi-objective optimization mechanism, the algorithm in this paper further improves the
flexibility and applicability of strategy design. The return and risk trade-off curve displayed in the experiment
intuitively reflects the effectiveness of multi-objective optimization, providing more targeted risk
management solutions for different market conditions and investor needs. In addition, the introduction of the
time series nested structure not only improves the accuracy of feature extraction but also significantly
enhances the strategy's adaptability to non-linear market dynamic changes, providing a new technical path for
the field of financial risk management.
Future research can further explore the application potential of this algorithm across markets and multi-asset
portfolios while incorporating generative models and causal inference techniques to improve the breadth and
depth of feature modeling. In addition, extending reinforcement learning to a multi-agent framework to
simulate the game behavior among market participants also provides important directions for risk
management. Through continuous optimization and expansion, the method in this article is expected to play a
greater role in a wider range of financial scenarios and provide strong technical support for dynamic risk
management in complex market environments.
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