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Abstract:
Single-cell RNA-sequencing (scRNA-seq) technology enables precise measurement of gene
expression at the single-cell level, offering insights into cell subpopulations that bulk RNA
sequencing cannot provide. However, effective classification of scRNA-seq data remains a challenge
due to its high-dimensional, batch-variable, and complex nature. In this study, we empirically
evaluate the performance of four supervised learning models—decision trees (DT), random forests
(RF), boosting, and logistic regression (LR)—on scRNA-seq data. While decision tree-based
methods have traditionally shown strong performance in gene expression analysis, our results reveal
that logistic regression outperformed the other models in terms of accuracy. This suggests that LR
provides a robust and interpretable solution for cell-type classification in scRNA-seq data. Despite
its effectiveness, the model's performance is limited by the available training data and diversity of
cell types. Future research should address these limitations through expanded datasets, further
empirical evaluations, and integration of advanced ensemble techniques for improved classification
performance.
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1. Introduction
Single-cell RNA-sequencing technology have been rapidly developed in recent years, as a technique
which can measure the transcriptome and gene expression level of individual cell, scRNA-seq can
reveal many potential properties of cell subpopulations which could not be accomplished in bulk
RNA sequencing [1]. From the count of publications in PubMed (Figure 1), the publication of the
scRNA research is increasing dramatically, indicating the remarkable attention worldwide.
The focus of recent work is on the cell characterization and differentiation within each population
being compared. Up to now, the work primarily depended on unsupervised methods or known
markers. Knownmarkers, in biological cases, are the specific genes which would be highly expressed
in certain types of cells [2]. While the application of markers is useful, it may not be available for
several cell types [3]. Although unsupervised methods are useful to solve the analysis of unlabeled
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dataset, some experts have shown that supervised methods can be much easier to interpret and much
more accurate [4]. However, the lack of the empirical evaluation among multiple supervised models
applied in single-cell RNA sequencing data will make the supervised learning methods less credible
in the biology.

Figure 1. The count of publications about the topic Single-cell RNA-Seq in PubMed
Basically, the analysis of scRNA-seq data is a supervised, high dimensional, multiple classification
problems. For the biological gene data, expression level of a single cell type under different
experimental situation (termed as batch effect) may be highly variable which is either because of the
difference from the sequencing platform or the variance induced by biological dynamic [5]. Below
we will show various methods trying to overcome the problems, try to restore the real situation as
much as possible, and solve the overfitting problem. Inspired by a paper published in 2006 [6], which
is about the empirical comparison based on 11 binary classification problems, decision trees or the
extensions of decision trees are assumed to be the most effective in the prediction of gene expression
cell types. However, in terms of the final accuracy score, the optimal result of our project is not from
DT, but from logistic regression.

2. Related Work
Supervised learning models have been extensively explored in various domains for classification
tasks, which is directly relevant to the challenges posed by scRNA-seq data classification. Shen et al.
[7] demonstrated the application of semi-supervised methods to enhance image classification under
limited labeled data scenarios, which aligns with the challenges of limited training data in scRNA-
seq. Xiao [8] emphasized the robustness of self-supervised learning for few-shot classification,
offering insights into handling diverse cell types in limited data contexts. Dimensionality reduction
and feature extraction, critical for high-dimensional datasets like scRNA-seq, were effectively
addressed by Liang et al. [9] through an automated data mining framework using autoencoders.
Feng et al. [10] further highlighted the potential of GAN-based approaches to enhance feature
extraction in few-shot learning, which can be adapted to reduce batch effects and noise in scRNA-
seq data. Optimization strategies for improving learning efficiency were explored by Qi et al. [11]
and Chen et al. [12] in large-scale language models, providing valuable methodologies that could be
leveraged to optimize supervised models for scRNA-seq classification. Additionally, Wang et al.
[13] introduced adaptive optimization in spatiotemporal prediction, which has implications for
enhancing the performance of supervised learning in scRNA-seq. In the context of time-series and



sequential data analysis, Sun et al. [14] applied transformer models to complex time-series problems,
while Sun et al. [15] integrated CNN-LSTM architectures for spatiotemporal prediction, both
offering techniques that could be adapted for batch effect normalization in scRNA-seq data. Graph-
based methods also hold promise for scRNA-seq analysis, as demonstrated by Du et al. [16], who
used graph neural networks for relationship reasoning in knowledge graphs, a methodology
potentially adaptable for gene expression interdependency studies. Furthermore, Yu et al. [17]
tackled anomaly detection in anti-money laundering systems, providing transferable concepts for
outlier detection in scRNA-seq data. Other innovative applications, such as Duan et al. [18] and Yao
et al. [19], focused on deep learning-based UI generation and hierarchical graph neural networks for
stock type prediction, respectively, demonstrating the versatility of supervised models across
diverse fields and their potential adaptability to scRNA-seq classification.

3. Methods
3.1 Data source and pre-processing
Data from mouse gene dataset of interest which contains 20,499 genes with normalized gene
expression levels - RPKM values for each cell and 24244 total samples were used (See Table 1) [3].
The data contains all_data.h5, together with separate train & test dataset. Classifier for cell types, in
real experiment, would be used to predict the cells from new experiments. Therefore, to restore the
actual situation, labels that are in the testing dataset can also be found in the training data. Meanwhile,
compared with the train samples, test samples come from different experiments were selected.

Table 1. The dataset
Train dataset Test dataset

Samples 21389 2855
Unique cell types 46 21
Features (genes) 20499 20499

Figure 2.Workflow
3.1.1 Cell selection
This project select the cell types based on the test cell types manually as our real training labels to
minimize the noise given by the train dataset redundancy.
3.1.2 Feature selection
Uninformative feature caused by irrelevance, correlation, and redundancy can impede the
performance of classification model. Additionally, because of the technical variation which is mainly



caused by the difference of sequencing platform and uninformative biological variation induced
mainly by the experiment batch effect, low variance filter is applied based on scikit-learn package [20]
to select highly variable genes based on the RPKM value (See Figure 2). Meanwhile, chi square
function was applied to measure the relation between features and labels.

Table 2. Example of gene dataset for chi square computing
Gene 1 Gene 2

Cell 1 RPKM value RPKM value
Cell 2 RPKM value RPKM value

Chi Square Formula:

In the Chi Square Formula, ‘O’ is the observed value, ‘E’ means the expected value and ‘I’ is the ‘i’th
position in the contingency table. The chi-squared statistic is a single number that tells how much
difference exists between your observed rpkm values and the rpkm values you would expect if there
were no relationship at all in the dataset. P-value was used here to explain the result of Chi square for
different groups. The Select K-Best package was used here to select the top related features [21].
After the feature selection, highly variable genes and highly specific cell-type-related features
would be left. Selection could facilitate downstream applications like DT-based classification and
save the computational costs.
3.1.3 Principal component analysis (PCA)
After feature selection, it is still important to apply dimension reduction as too much noise still exists.
The core concept of PCA is to map all features to K dimensions. Therefore, PCA for dimensionality
reduction was applied and adjusted to the optimal dimension leading to best accuracy.
3.2 Supervised learning methods
3.2.1 Decision Tree
Decision tree is a basic model which was used as a controlled trial in the comparisons. The max-depth
and pruning were not determined in the experiment. In our model, Gini impurity is used as the
criterion.
3.2.2 Random Forest
In random forests, each DT in the model is built from a set of samples drawn with replacement from
the training set, i.e., 632bootstrap, which means roughly 63% of the original data are selected. The
input is the entire original training dataset. Cross validation is implemented to determine the best
number for trees and the max-depth of the tree in the model. In this model, Gini impurity is used as
the criterion.
3.2.3 Ada-Boosting
Ada-Boosting uses a set of week classifier, in our case, small DTs, to operate on repeatedly modified
versions of the data. The predictions from all of them are then combined through a weighted majority
vote to produce the final prediction. Therefore, there are two sets of weights: weights for DT and
weights for data. Initially, those weights are all set to 1/N. We train the first weak classifier and
focusing on the mistakenly classified cells by allocating new weight for each data point. Each
subsequent weak learner is thereby forced to concentrate on the examples that are missed by the
previous ones in the sequence. For a multi-class classification problem, the previously described two
steps: learning and allocating new weight, will iterates until the training error reduce to zero.



3.2.4 Logistic Regression

Figure 3 One versus rest [8]

Figure 4. One versus one [8]

This model used One vs One (OvO) instead of One vs Rest (OvR) in the logistic regression model.
One vs Rest (OvR) treat a multi-class(n) problem as n binary problem. Each binary problem the model
select one set of data points as one class, and all the other point as the other class. Therefore, the
algorithm takes O(nT), if the binary classification takes O(T).

3.3 Evaluation of classifications
Different standards are used to evaluate these models as they can judge these models from different
aspects. It is possible to build a confusion matrix and calculated the accuracy score, recall score,
precision score and f1_score based on it. Accuracy score is based on the whole data, and the other
standards are based on each cell type. In addition, it normalized this confusion matrix to see the
accuracy of specific cell types clearly.
However, in evaluation of biology classification models, the question of how similar two cell types
are is quite important because a rigid (binary) distinction between cell types is not appropriate since
“neuron”, “hippocampus”, and “brain” are all related cell types, and a model that groups these cell
types together should not be penalized as much as a model that groups completely unrelated cell types
together [3]. Therefore, the evaluation can be improved by adding some weights. A similarity matrix
is downloaded [3]. In general, numbers are changed in the confusion matrix by timing them with the
weight which equals to (1-similarity number), acquiring a new accuracy score by our weighed
confusion matrix.

3.4 Software packages
Low variance filter, Chi square filter, PCA, Decision tree, Random forest, Ada-boosting, Logistic
regression, and confusion matrix are all coded in Python based on scikit-learn package [21].

4. Results
4.1 Accuracy score of the four models
4.1.1 Decision Tree
In the Decision Tree Model, we both tried model without PCA or with PCA from 40 to 100. Finally,
34% is set as the baseline for comparison between decision tree-based models.

Table 3. Accuracy score of Decision Tree
Chi Square Filter Lower Variance Filter PCA Accuracy score

None 15 100 0.212
None 15 50 0.194
None 15 45 0.262
None 15 40 0.273



None None None 0.349

Table 4. Accuracy score of Random Forest
Chi Square Filter Lower Variance Filter PCA Accuracy score

None 15 200 0.321
None 15 100 0.300
None 15 50 0.429
None 15 45 0.430
None 15 40 0.451

4.1.2 Random Forest
In the Random Forest Model, the result is better, achieving 45% overall accuracy. The training data
for each tree comes from bootstrap. The best result comes from 40-dimension 150 trees with
maximum depth of 30.
The hyperparameters are determined using cross validation, for example, to determine the number of
trees in the random forest, we perform 5- fold cross validation on 100 trees, 150 trees 200 trees and
so on. The high cross validation mean accuracy comes from 150 trees, which is 93.2%.

4.1.3 Ada-Boosting
Table 5. Accuracy score of Ada-Boosting

Dimension after PCA N_estimator Max_depth Accuracy on training set Accuracy on test set
50 100 3 0.30 0.18
50 300 3 0.42 0.18
50 1000 3 0.47 0.21
50 100 10 0.89 0.26
50 300 10 0.94 0.32
50 800 10 0.95 0.33
40 300 10 0.94 0.38
40 400 10 0.95 0.39
40 850 7 0.85 0.37
40 1400 7 0.90 0.39

Some of the most representative parameter values are selected, shown in Table 5. From the last two
rows in the table, it is obvious that even if the model almost doubles the max iteration
number(n_estimator), the overall training error improve only slightly. It becomes incredibly time-
consuming. By adjusting the Decision Tree’s max depth, result is improved, but still, the highest
success rate cannot even compete with random forest classifier’s worst result. Therefore, the
conclusion is that DT-based boosting algorithm is not suitable to be directly applied in a multi-class
biology classification problem.
4.1.4 Logistic Regression

Table 6. Accuracy score of Logistic Regression
Solver Multiclass Max_iter Accuracy on training set Accuracy on test set

Before Cell Selection
Sag Multiclass 100 0.78 0.5
Sag Multiclass 200 0.81 0.54
Sag Multiclass 500 0.84 0.54
Sag Multiclass 1000 0.86 0.52
Sag Multiclass 2000 0.88 0.49

After Cell Selection
Sag Multiclass 100 0.88 0.55
Sag Multiclass 200 0.9 0.57
Sag Multiclass 500 0.9 0.56
Sag Multiclass 1000 0.93 0.55
Sag Multiclass 2000 0.93 0.51



Logistic Regression works best. It is the most time-efficient and has the best overall accuracy. As
described in the method, the parameters chosen are for One vs One (OVO) multiclass classification,
which is more time consuming than One vs Rest (OVR), but at the same time more accurate. If adding
the cell selection, the result is even better, achieving 57% success rate.
4.2 Confusion matrix on random forest and logistic regression
Besides accuracy score, confusion matrix, precision, recall, and f1-score (Methods) are also used to
evaluate our models of this project. The best two model are compared in terms of overall accuracy.
In the figure 5 and figure 6, the deeper the color of each intersection grid is, the more cases there are
that X label is predicted to be Y label. From the figure 5 and figure 6, it can be seen that there are
more deep color grids in the diagonal in the Logistic Random than in the Random Forest, which
means that more labels in the Logistic Regression were predicted correctly.
In fact, it is obvious that the number of cell-types each time the confusion matrix presents depends
on the union of cells from both test data, which has 21 types of cells, and the predicted cell dataset.
In that case, the confusion matrix, which is output from each model, or from the same model but at
different times, will vary in the number of label-types. However, that does not affect our conclusion
one thing. That is because the only correct case of classification is when a labeled cell is predicted to
be itself, which is denoted by the diagonal grids, and those deep color grids in the diagonal only come
from the 21 cell types to be predicted. Therefore, more labels to be predicted correctly means more
labels to be predicted correctly within those 21 types of cells.
Meanwhile, there are more deep color grids in the lower left corner of Random Forest, which means
that Random Forest assigns more labels to the wrong kinds.

Figure 5. Random Forest Figure 6. Logistic Regression

4.3 Precision, recall, f1-score on random forest, and logistic regression
Among all the test cells, the precision score, recall score and f1-score for them are tested. The number
of each type of cells in the test data are also provided, so that a more intuitive insight into the
relationship between number of cells and its prediction result can be provided. It is already known
that f1-score is the harmonic average value of precision score and recall score (Methods).

Table 7. Random Forest
precision recall f1-score support

CL:0000137 osteocyte 0.98 0.97 0.98 108
CL:0000235 macrophage 0.85 0.93 0.89 42
UBERON:0000966 retina 0.99 0.65 0.79 250
CL:0002319 neural cell 0.58 1 0.74 81

UBERON:0001003 skin epidermis 0.83 0.63 0.72 678
CL:0002321 embryonic cell 0.6 0.69 0.64 173

CL:0002322 embryonic stem cell 0.5 0.6 0.55 358
UBERON:0000044 dorsal root ganglion 0.3 0.37 0.33 123



CL:0000037 hematopoietic stem cell 0.59 0.06 0.11 162
UBERON:0001851 cortex 0.16 0.04 0.07 266
UBERON:0001264 pancreas 1 0.01 0.02 162
CL:0000353 blastoderm cell 0 0 0 10

CL:0000540 neuron 0 0 0 133
CL:0000746 cardiac muscle cell 0 0 0 11

UBERON:0000115 lung epithelium 0 0 0 78
UBERON:0000922 embryo 0 0 0 60
UBERON:0000955 brain 0 0 0 38

UBERON:0001898 hypothalamus 0 0 0 29
UBERON:0001954Ammon's horn 0 0 0 15

UBERON:0002048 lung 0 0 0 58
UBERON:0002107 liver 0 0 0 20

accuracy 0.43 2855

Table 8. Logistic Regression
precision recall f1-score support

CL:0000137 osteocyte 1 0.98 0.99 108
CL:0000235 macrophage 0.89 0.98 0.93 42

UBERON:0001003 skin epidermis 0.79 0.89 0.83 678
UBERON:0000955 brain 0.96 0.71 0.82 38
UBERON:0000966 retina 0.96 0.69 0.8 250
UBERON:0002107 liver 0.93 0.7 0.8 20

CL:0000037 hematopoietic stem cell 0.66 0.68 0.67 162
CL:0002321 embryonic cell 0.68 0.64 0.66 173
CL:0002319 neural cell 0.41 1 0.58 81

UBERON:0000044 dorsal root ganglion 0.47 0.76 0.58 123
CL:0002322 embryonic stem cell 0.43 0.62 0.51 358

UBERON:0001851 cortex 0.22 0.15 0.18 266
CL:0000540 neuron 0.21 0.06 0.09 133

UBERON:0001264 pancreas 1 0.01 0.02 162
accuracy 0.57 2855

precision recall f1-score support
CL:0000137 osteocyte 1 0.96 0.98 108
CL:0000235 macrophage 0.9 0.9 0.9 42

UBERON:0001003 skin epidermis 0.79 0.87 0.83 678
CL:0002319 neural cell 0.68 1 0.81 81
UBERON:0000966 retina 0.99 0.67 0.8 250

UBERON:0000044 dorsal root ganglion 0.74 0.79 0.76 123
UBERON:0000955 brain 1 0.53 0.69 38
CL:0002321 embryonic cell 0.6 0.76 0.67 173

CL:0002322 embryonic stem cell 0.62 0.67 0.64 358
UBERON:0002107 liver 1 0.45 0.62 20

CL:0000037 hematopoietic stem cell 0.86 0.38 0.53 162
UBERON:0001851 cortex 0.13 0.05 0.07 266

CL:0000540 neuron 0.14 0.02 0.04 133
CL:0000353 blastoderm cell 0 0 0 10

CL:0000746 cardiac muscle cell 0 0 0 11
UBERON:0000115 lung epithelium 0 0 0 78

UBERON:0000922 embryo 0 0 0 60
UBERON:0001264 pancreas 0 0 0 162

UBERON:0001898 hypothalamus 0 0 0 29
UBERON:0001954 Ammon's horn 0 0 0 15



UBERON:0002048 lung 0 0 0 58
accuracy 0.54 2855

The primary concern is to compare Random Forest and Logistic Regression. As can be seen from
Table 7 and Table 8, all values that are greater than 0.9 are bolded. From the f1-score column,
osteocyte cells were always classified the most accurately, and macrophage cells the second. Also,
f1-score of Logistic Regression is usually larger than Random Forest, which means that Logistic
Regression has a better classification ability. In conclusion, Logistic regression behaves better than
random forest.

4.4 How pre-processing impact our results
Both feature selection and dimensionality reduction tools showed great impact on our models.
Different combinations of these methods are compared to pre-process our data. In the Decision Tree
Model, it is found that Decision Tree without PCA (Principal Component Analysis) performed much
better than with PCA (Principal Component Analysis). Presumably, the model was relatively simple,
therefore, it will be unable to effectively differentiate between cells when there were relatively fewer
features for it to learn. In the Ada-Boosting Model, PCA (Principal Component Analysis) seemed to
have very little impact on the accuracy score. However, feature selection had a very large impact on
the program efficiency. Considering its low classification accuracy results, the best two classifiers in
the experiment- Random Forest and Logistic Regression are compared. Compared with the Logistic
Regression Model, which though has the best accuracy score, it is found that pre-processing had a
larger impact on our Random Forest Model, especially when combined, which improved the accuracy
score of Random Forest by 10% on average, Logistic Regression by 5% (See Table 9). From above,
it is obviously that when these models were getting relatively more complicated compared with
Decision Tree, the pre-processing could have a larger impact on the accuracy of the models.

Table 9. Pre-processing impact on the accuracy score
Feature selection types Accuracy increase for RF Accuracy increase for LR

Chi square filter (PCA 40) 2% 2%
Low variance filter (PCA 40) 5% 3%
Two-combined (PCA 40) 10% 5%

4.5 How similarity between cells revises our results
The similarity coefficients are used to revise the accuracy of the two best models. For the Random
Forest Classifier, the accuracy score before applying similarity coefficients was 0.435, and after was
0.461, which increased by 2.6%. For Logistic Regression Model (the best model), the accuracy score
before was 0.571, and after was 0.598, which increased by 2.7%. (See Table 10)
In conclusion, the accuracy score are revised according to Similarity Coefficients.

Table 10. Revision of the accuracy score using similarity coefficients between cells
Classifier Accuracy before Accuracy after Accuracy increase

Random Forest 0.435 0.461 2.6%
Logistic Regression 0.571 0.598 2.7%

5. Discussion
The purposes of this paper are comparing the performance of different DT-based models, as well as
trying different ensemble methods to address this multi-class classification problem. To improve the
accuracy of the high dimension, multiclass, batch-related classification problem, we used the popular
models, mostly ensemble methods, to implement on our model and finally the overall accuracy
improved from baseline Decision Tree 34.9% to Logistic Regression 57.1% before revision, and 59.8%



after revision.
In all the models that have been tried, the Logistic RegressionModel performed best, and the Random
forest one the second. The Ada- Boosting model seemed to be the most time consuming and having
the lowest accuracy. One possible reason why the Logistic Regression outperformed all the other
Decision Tree-based models is that Logistic Regression uses a modified version of "divide and
conquer". It breaks down multiclass problem into several binary classification problems, and then
combines the result. This approach makes the algorithmmore time efficient, and the voting technique
also improves the Logistic Regression Model.
At the pre-processing stage, cell type selection was applied by extracting some of the cells which are
selected based on the test cell dataset from train dataset, in order to reduce the computational difficulty
and increase the accuracy of our supervised models. For the sake of the simplicity and manually
filtering noise, the accuracy of our classifiers was raised by 10% on average. However, it is obvious
that the use of manually selection to reduce the train data set will not fit the real-world application.
Therefore, it is much more confident to classify the cell type in the situation that the researchers have
the basic prediction and range of the potential cells. We also used two kinds of Feature Selection tools
called Chi Square Filter and lower Variance Filter, and PCA (Methods), which all showed great
impact on the models, not only increasing the accuracy score, but also improving the efficiency of
models to a large extent, especially for large-scale scRNA-seq datasets whose computational time is
long and memory-consuming. Furthermore, when testing the performances of each model with each
PCA dimensionality, there was usually a 3% fluctuation, so in the project the average of the three
tests as the final accuracy score.
With regard to Decision Tree Model, as can be seen in table3, it is found that Decision Tree without
dimensionality reduction performed much better. This is an interesting finding. One possible reason
is that the PCA method does not use labels, so the purpose of PCA is for reconstruction rather than
classification.

6. Future work
For the best model in our research, the accuracy raised by the feature selection is not dramatic,
therefore, other feature selection method such as the selection based on highly expressed gene should
be tried in the future. Also, we can also take the advantage of the idea of divide-and-conquer to design
an algorithm combined with Ada-Boost and One vs Rest (OVR), instead of just using the existing
package, converting the multiclass classification problem into several binary classification problem,
to check if the accuracy can be further improved. In addition, we can take into consideration to build
a working software or a website server, therefore, it is necessary to consider designing adaptive
hyperparameters. For example, the number of trees in random forest can be adaptively updated to the
optimal value after new data is added to the training set. Furthermore, we need to generalize our
model by discarding cell selection, because in real world, we usually cannot guarantee to extract
labels every time we have a new test set. Since our project showed that cell selection did work, in the
future, instead of cell selection, we can try some other methods to detect irrelevant cells in the training
data to improve the result.

7. Conclusion
Analysis of scRNA data is essential for cell classification studies. Supervised learning models like
decision trees, random forests, boosting and logistic regression all performed well in cell
classification, yet logistic regression behaved the best in terms of the accuracy among four evaluated
models. Our evaluation has potential to better understand the use of supervised classification models
in scRNA data. However, because of some limitations such as the shortage of cell types in the training
data, the logistic regression can only be predicted to be one of the most effective models for scRNA
data. Apart from the detail optimization to the workflow, future work could do more empirical
evaluation and try more complex combination with basic classifiers on different scRNA data.
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