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Abstract: With the growing demand for efficient Convolutional Neural Network (CNN)
deployments in low-power, edge computing environments, FPGAs have emerged as an ideal
platform due to their parallel processing, low power consumption, and dynamic reconfiguration
capabilities. This paper presents the design and implementation of a dynamic reconfigurable CNN
accelerator tailored for embedded edge devices. The proposed accelerator architecture is designed
with hardware-software co-design principles, optimizing for modularity and flexibility.
Experimental results demonstrate significant reductions in power consumption (42.06%) and
hardware resource utilization (17.76% for FF, 32.82% for LUT, 48.70% for BRAM, and 47.01%
for DSP) when compared to static circuit accelerators. These improvements highlight the potential
of the accelerator for a broad range of CNN applications, particularly in resource-constrained
environments. Future work will focus on further optimization and extending the architecture to
support CNN-based lightweight object detection algorithms.

Keywords: FPGA; CCN; Dynamic Reconfiguration; Hardware Acceleration; Software
Hardware Co-design.

1. Introduction
With the continued development of Convolutional Neural Network (CNN) algorithms and the
improvement of FPGA computational performance, FPGA-based CNN accelerators are becoming
increasingly popular in industrial and defense AI edge applications [1]. They are widely used in low-
power embedded image classification [2], object detection [3], and biometric recognition [4], among
others. As CNN algorithms are computationally intensive, they have large algorithmic complexity
and a number of parameters when constrained to high accuracy. When deployed on edge embedded
computing devices that are limited in power consumption and resource volume, Application Specific
Integrated Circuits (ASICs) and Graphics Processing Units (GPUs) struggle to meet the requirements
of low power consumption, use of fewer hardware resource area and real-time performance [5]. On
the other hand, FPGAs with high parallel computing [6], low power consumption [7] and dynamic
reconfiguration [8] capabilities are well suited for device requirements.
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In recent years, several CNN accelerator designs have been proposed. Literature [9] proposed a three-
layer storage system CNN accelerator that uses channel interleaving, multi-channel transmission, and
multi-level co-optimization methods. However, excessive channel interleaving causes long data
delays and results in hardware resource redundancy. Literature [10] proposed a general-purpose CNN
accelerator for System on a Chip (SoC) design, which supports any input size, input feature map
depth, and stride by encapsulating the entire CNN network as an operation accelerator core. The
accelerator uses the main memory to store data between computation layers, splitting complex
convolutions into sub-convolutions to improve generality, but its accelerator inference speed is only
0.83 FPS. Literature [11] proposed a CNN accelerator that uses loop tiling and data flow modeling
optimization, improving the acceleration effect while reducing hardware resource utilization.
The paper proposes a low-power, high-flexibility, and hardware resource space-reusable dynamic
reconfigurable Convolutional Neural Network (CNN) accelerator for embedded edge computing
devices. The main research contents are summarized as: (1) a dynamic reconfigurable CNN
accelerator architecture is proposed; (2) the operation modules are designed and optimized for
reconfigurable modularity and the CNN is deployed in both software and hardware on an FPGA
platform through a collaborative design. The results show that the proposed CNN accelerator has low
power consumption, reduces resource consumption, and enhances system flexibility.

2. Background Knowledge
2.1 Convolutional Neural Network
Convolutional neural networks (CNNs) are feedforward artificial neural networks with a deep
structure. Compared to traditional artificial neural networks, CNNs can directly process large
amounts of pixel data from three-dimensional images and have good algorithm scalability and
flexibility. The operation layers in a CNN typically consist of pooling layers, convolutional layers,
fully connected layers, and activation layers. This study designs a CNN architecture consisting of two
convolutional layers, two pooling layers, three activation layers, and two fully connected layers. The
activation function layer uses rectified linear unit (RELU) activation function and the pooling layer
uses maximum pooling operation. The network parameters are quantized to the 16-bit fixed-point
design to reduce the number of parameters. The input to the network is handwriting digit images from
the MNIST dataset. The network structure is shown in Figure 1, where C, P, R, and F represent
convolutional layers, pooling layers, activation function layers, and fully connected layers,
respectively.
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Fig 1. Structure diagram of CNN model

2.2 Dynamically Reconfigurable Technology of FPGA
Dynamically reconfigurable technology [22] in FPGA is a technique that enables hardware resources
to be reconfigured during system operation. This allows the processor to dynamically allocate
resources based on the changing requirements and demands of the application, improving processor
performance and efficiency. In the design of dynamic reconfigurable CNN accelerators, this
technology helps to quickly and efficiently allocate hardware resources of the processor when
processing CNN models.
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In practical applications, dynamically reconfigurable technology enables the system to dynamically
adjust its hardware configuration in different application scenarios to meet different performance
requirements. For example, when the processor needs to process a large amount of data, it can
dynamically configure more hardware resources, and when processing a small amount of data, it can
dynamically release hardware resources to reduce energy consumption.
Dynamically reconfigurable systems can be classified into two categories: complete reconfiguration
and partial reconfiguration [19]. Complete dynamic reconfiguration changes the functionality of the
system by reconfiguring all hardware resources through an FPGA. Partial dynamic reconfiguration
(DPR) divides the whole FPGA area into static logic regions and dynamic logic regions. The static
logic regions are the regions where the circuit structure is fixed, while the dynamic logic regions are
the regions that can change by loading and unloading different hardware configuration files. The
diagram for dynamic partial reconfiguration is shown in Figure 2, where the FPGA is divided into
reconfigurable regions and static regions. The reconfigurable modules in the dynamic region are
mapped to configuration files A1, A2, and A3 through register address mapping. During the operation
of the system, different circuit configuration files can be dynamically configured from the
configuration file library for different computation tasks [20]. By updating the hardware architecture
dynamically in this way, the required hardware functions for the complete system can be constructed
without interrupting the system, however, this technology is relatively complex both in design and
implementation, and the stability of the configuration process is somewhat lacking.
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Fig 2. Schematic diagram of partial dynamic reconfiguration

3. Dynamic Reconfiguration Accelerator Design
3.1 Hardware Design

Fig 3. The overall architecture of the CNN accelerator



In this paper, a dynamically reconfigurable convolutional neural network accelerator architecture is
proposed, and the overall architecture of this accelerator is shown in Fig. 3. The entire accelerator
system is divided into a programmable logic (PL) side and a processing system (PS) side [21]. The
hardware logic circuitry of the PL side is divided into dynamic and static logic regions, and its
functional modules include the dynamic reconfigurable modular design of the convolutional
activation module, the pooling module, the fully connected module, and the static modular design of
the common basic operator operation acceleration module, and the direct memory access (DMA)
module. The functional modules include the convolutional activation module, the pooling module,
the fully connected module for dynamic reconfiguration modular design, and the acceleration module,
the direct memory access (DMA) module, and the decoupler module for static modular design of the
common basic arithmetic operations.
As depicted in Fig 3., the accelerator separates the functional modules under the Composable area
into two dynamic reconfiguration partitioning functional module groups (RP_func0 and RP_func1)
and a static logic module group (Static_func). The modules communicate through the AXI4-Lite bus
and AXI4 Stream bus as the data communication interface, with the PS side using the AXI4 Lite bus
to transmit control commands to the accelerator modules via the AXI4 Interconnect module. The
AXI4-Stream bus is used to transmit control commands between RP_func0, RP_func1, the
Static_func group, and the PS side through the DMA and AXI4 Stream Switch module at the PL side.
The DMA controller facilitates high-speed data exchange between the accelerator and the external
DDR4 for task data streams. Each computing module group is connected to the AXI4 Stream Switch
module and communicates with the external DDR4 through the AXI4-Stream bus interface. To
prevent logical confusion between the reconfigurable and static logic modules during operation, the
design uses the Decoupler module for logical decoupling and the DFX_shutdown manager module
to manage the AXI4-Lite and AXI4 bus interface for a safe accelerator operation.
The accelerator architecture in the design of this paper uses the central processor of the PS to
interconnect and communicate with each module at the PL side and control the data flow through the
memory interface. Due to a large number of operations between the operation layers, a high-speed
interface design is used for each layer in order to improve the data transfer speed of each layer. In
this paper, we are using the high-speed data channel of DMA to load the data in the PS memory into
the buffer and transfer the data such as feature map, deviation, and weight to each operation
accelerator on the FPGA in order through timing control, and when the previous operation step is
finished, the result will be saved to the next input buffer.
In experiments, multiple calls to enable an unloaded DPR cluster block will generate a delay caused
by loading bit streams, so it is important to avoid repeatedly enabling reconfigurable modules in the
DPR cluster block. only one operator module can be enabled in a single use of the DPR region, and
it will not be automatically unloaded after being enabled. Therefore, in this paper, we put the
convolutional, pooling, and fully connected arithmetic modules with the same interface but different
sizes into different DPR cluster blocks and enable the modules, design the modules other than
arithmetic modules as static logic, and put the pooling arithmetic module and fully-connected
arithmetic module as reconfigurable modules into the reconfigurable partitions of RP_fun0 and
RP_fun1 respectively. As the above design, it can make the system used in a non-specific network
layer block or network architecture, improve the system flexibility while reducing the delay caused
by loading the DPR computing module, improve the system computing performance, and reduce the
power loss caused by occupying too much static logic area.

3.2 Hardware Design
The reconfigurable modules of the accelerator in this paper mainly contain the convolutional
operation accelerator, pooling operation accelerator, and fully connected operation accelerator. In
order to improve the integration of the reconfigurable modules, the convolutional operation layer and
the activation function layer set become the convolutional activation layer, and similarly the fully
connected layer and the activation function layer set become the fully connected activation layer. As
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shown in Figure 2, this paper divides the FPGA into a static logic region and two dynamic
reconfiguration regions, and each dynamic reconfiguration region is spatially multiplexed with three
reconfigurable modules, thus forming a reconfigurable module group. When reconfigurable modules
are assigned to different reconfiguration regions, the same reconfiguration region principle needs to
be followed, i.e., the number of on-chip hardware resources occupied by reconfigurable modules
should be as close as possible to reduce the waste of hardware resources [22]. The top-level design
block diagram of the reconfigurable module group is shown in Fig. 4. The accelerator system selects
the reconfigurable module into the execution process through the AXI4 Stream Switch module, and
in order to prevent the logic mixing between the dynamic logic region and the static logic region from
making serious errors in the system, the reconfigurable module is decoupled and designed using the
Decoupler module to decouple the logic of the reconfigurable module. Decoupler module is used to
decouple the logic of the reconfigurable module.

Fig 4. Top-level design block diagram of the reconfigurable module group
3.3 Operation Unit Optimization Strategy
Current optimization methods commonly used to improve the performance of accelerator image
processing in embedded edge hardware include loop pipelining and loop unfolding [7]. The loop
unfolding method is to unfold the loop iterations and let the parallel operations within the loop, which
can be very good to improve the operation speed, but it will significantly increase the hardware
resource consumption, which can be used to increase the resource utilization of PL in large-scale
operations. Loop pipelining, on the other hand, increases system throughput by repeatedly executing
operations from different loop iterations with only a small increase in hardware resource consumption.
The hardware interface design of each CNN model adopts AXI4 Stream bus interface design, which
transfers data from memory to CNN IP core through DMA, and then transfers the processed data in
back to DDR4 again, with a maximum transfer rate of 2133MB/s, which can provide ample
bandwidth and effectively enhance the system. The algorithm topology uses a combination of cyclic
pipelining and cyclic unfolding optimization design, as shown in Algorithm 1, with a fully parallel
design for the parallel operation part and a fully pipelined design for each operation layer, in order to
shorten the delay line (TDL), reduce the operation delay, and improve the accelerator throughput.
Since the convolutional layer in the network consumes a lot of computational resources and has a
long delay line length, a pipeline with a loop starts interval value of one, a specified number of
iterations for loop execution, and a specified use of computational resources are used to shorten the
delay line length as much as possible while making full use of computational resources to improve
the system performance. The optimization methods of the pooling operation accelerator and the fully
connected accelerator are the same as those of the convolutional operation accelerator.

Algorithm 1. Parallel operation optimization pseudo-code
Input: InputFeature[too][trr][tcc],

Weighs[Tcout][Tcin][H][W];
Output: OutFeature[Tcout][Tcout][Tyout];
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1.FOR(i=0;i<H;i++){
2. FOR(j=0;j<W;j++){
3. FOR(trr=row;trr<min(row+Tr,R);trr++){
4. FOR(tcc=col;tcc<min(col+Tm,C);tcc++){
5.#PRAGMAHLS PIPLINE II=1 // Pipeline
6.

FOR(too=to;too<min(to+Tn,M);tii++){
7.#PRAGMA HLS UNROLL // Parallelization
8.

FOR(tii=ti;tii<min(ti+Tn,N);tii++){ 9.
#PRAGMA HLS UNROLL // Parallelization
10.LOOP: OutFeature[too][trr][tcc] +=\
11. Weights[too][tii][i][j]*\
12. InputFeature [tii][S*trr+i][S*tcc+j];
13.}}}}}}

3.4 Design Flow
The design flow of the CNN accelerator is outlined in Figure 5. The process starts with building the
CNN algorithm model on the Tensorflow deep learning framework [23]. The model's parameters are
then trained on the MNIST dataset and quantized to 16-bits fixed-point, saved as binary files. PYNQ-
Kria, a software-hardware collaboration framework, is used as the embedded operating system and
hardware deployment environment on the XCK26-SFVC784 heterogeneous ARM and FPGA
platform. The IP soft cores for the convolutional activation module, pooling module, and fully
connected module are designed and packaged using the Vitis HLS development tool [24]. Hardware
design optimization and module reusability are performed using the Vivado tool. The overall FPGA
hardware design of the CNN accelerator on the PL (Programmable Logic) side is done using Vivado.
Finally, the PS (Processing System) side, which acts as the host side, uses the Jupyter Notebook
development platform to call the IP softcore on the PL side and configure the network parameters,
completing the software application of the designed CNN accelerator.

Fig 5. Design process of CNN accelerator

3.5 System Scheduling Flow
The scheduling flow chart of the CNN accelerator system in this paper is shown in Figure 6. It uses
the PetaLinux [25] operating platform to deploy the soft and hard collaborative framework PYNQ-
Kira as the embedded Linux operating system. the FPGA is controlled by the configuration parameter
commands input from the upper computer side, that is, the PS side, to complete the operation start-
up and switching layer by layer according to the convolutional neural network layer.



No Complete the
parameter

configuration?

Enable
reconfigurable
modules?

No Load the IP soft
core for this layer

Yes

Loading
reconfigurable

module
configuration files

Configure a layer
of IP core
parameters

CNN image
classificationStart FPGA

End

Yes

No
Finished

classification?

Yes

Fig 6. Procedure of CNN accelerator system

4. Results
In order to verify the CNN accelerator in this paper, the development tools Vivado (2020.2) and
Vivado HLS (2020.2) of AMD-XILINX are used to complete the engineering design and hardware
module design and synthesis verification on the PL side, and then the PYNQ-Kira framework is
deployed through PetaLinux operating platform for soft and hard co-design, and the already generated
The chip model of the KV260 hardware platform is XCK26-SFVC784, the CPU of its PS side is
ARM Cortex A53 CPU, and the off-chip high-speed memory is DDR4, the image to be tested is
imported into a 16G SD card, and then the hardware platform reads the image and enables the FPGA
to complete the convolutional neural network The image classification inference operation of the
convolutional neural network is completed by the FPGA.
The CNN accelerator proposed in this paper, the inference network adopts the CNN architecture of
Fig. 1, and the engineering design and construction of the accelerator are finally completed after the
design flow shown in Fig. 3. The actual hardware resource consumption of the PL side, after synthesis
and verification by Vivado, is shown in Table 1. If the CNN accelerator in this paper is designed with
a completely static circuit, its actual hardware resource consumption is shown in Table 2.

Table 1. Hardware resource consumption of CNN accelerator
Resource Type FF LUT BRAM DSP

Usage 17967 21412 59 54

Resource Quantity 234240 117120 144 1248

Utilization (%) 7.67 18.28 40.97 4.09
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Table 2. Hardware resources consumption of Completely static design of the CNN accelerator
Resource Type FF LUT BRAM DSP

Usage 21848 31874 115 102

Resource Quantity 234240 117120 144 1248

Utilization (%) 9.32 27.21 79.86 8.17

The data comparison shows that with the same hardware platform, the resource consumption of the
accelerator in this paper is significantly lower than that of the accelerator with a completely static
design, using 17.76%, 32.82%, 48.70%, and 47.01% less FF, LUT, BRAM, and DSP, respectively.
Since the accelerator in this paper utilizes dynamic reconfiguration and reuses other reconfigurable
modules in the dynamic reconfiguration region space in advance so that it can dynamically load
reconfigurable modules, the area used for system logic resources and resource consumption are
reduced substantially.

Table 3. Compare the results of different CNN accelerators

Type Device Data
Precision

Clock
Frequency
/MHz

Power/W Throughput
/GOPS

Processing
Time on
PL/ms

Energy
Efficiency
(GOPS/W)

Lit.[9] XC7Z020 Fixed16 100 5.04 20.53 -- 4.07

Lit.[10] ZU3EG Fixed16 170 3.55 31 4.6 8.73

Lit. [11] ZU3EG Fixed16 169 4.7 51 0.174 10.85

Lit. [22] XC7Z020 Fixed16 100 7.8 18.35 20.3 2.35

This Work XCK26 Fixed16 200 2.92 26.2 0.142 8.97

Table 3 compares the power consumption and performance of the accelerator in this paper with some
other accelerators. From Table 3, it can be seen that the CNN accelerator designed in this paper shows
obvious advantages in low power consumption and performance compared with those in the literature
[9, 10, 11, 22], and its power consumption is reduced by 42.06%, 17.75%, 37.87% and 62.56%,
respectively; its comparison with the accelerators in the literature [10, 11, 22], the accelerator in this
paper spends less time on network inference in PL processing time reduction ratios of 3139.37%,
22.54% and 14195.77%, respectively; its energy efficiency ratios compared with those of the
literature [9,10,22] are improved by 120.39%, 2.75% and 281.70%, respectively.

5. Conclusion
In order to improve the flexibility of deploying convolutional neural networks on embedded edge
computing devices and reduce their hardware resource consumption and operational power
consumption, this paper designs a dynamic reconfigurable accelerator for convolutional neural
networks, which significantly reduces operational power consumption and resource consumption
through hardware and software co-design and dynamic reconfiguration design and optimization. The
accelerator supports reconfigurable module extensions and can be applied to different network
architectures. The experimental results show that the power consumption of the accelerator is 2.92W,
which is 42.06%, 17.75%, 37.87%, and 62.56% lower than the accelerator of the current study, and
the hardware resources FF, LUT, BRAM, and DSP are 17.76%, 32.82%, 48.70%, and 47.01% lower
than the accelerator of the completely static circuit, respectively. 47.01%. The next step will be to
explore the optimization strategy of the dynamically reconfigurable accelerator and extend the
deployed CNN algorithm to a CNN-based lightweight target detection algorithm to further improve



the overall performance of the dynamically reconfigurable hardware accelerator for more complex
applications.
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