()
PRESS

Transactions on Computational and Scientific Methods | Vo. 4, No. 9, 2024
ISSN: 2998-8780

https://pspress.org/index.php/tcsm

Pinnacle Science Press

Design and Verification of FlexSPI Controller Using
UVM for Efficient Flash Access

Lysandra Quill', Carys Imogen?, Ivo Casimir?

"Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, USA
“Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, USA
3Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, USA

Correspondence should be addressed to Lysandra Quilll;lysandra.quill470o0@pitt.edu

Abstract: The Serial Peripheral Interface (SPI) is widely used in System-on-Chip (SoC) designs
to connect peripherals such as Flash memory due to its simplicity, flexibility, and reliability. As
data transmission demands increase, SPI has evolved into advanced standards such as Dual-SPI,
Quad-SPI, and the latest xSPI. To bridge the gap between system buses and Flash device interfaces,
a FlexSPI controller is required to ensure efficient communication. This paper presents the design
and verification of a FlexSPI controller using the Universal Verification Methodology (UVM). The
UVM-based verification environment enables rapid development and reuse, addressing the
challenges posed by increasing chip complexity and verification costs. The proposed verification
platform significantly improves simulation speed, portability, and reusability, providing a valuable
reference for future bus module and interface verification tasks.

Keywords: Flex SPI Controller; UVM; Script; Verification.

1. Introduction

Due to its simple structure, flexible configuration and strong reliability, SPI is often integrated in SoC
systems to connect peripheral devices such as Flash [1]. With the higher and higher requirements for
data transmission rate and data throughput, SPI has also developed from the original standard SPI to
Dual-SPI, Quad-SPI, OSPI and the latest xSPI for SPI NOR Flash approved by the international
specification organization JEDEC. In most cases, there are differences between the system bus and
the interface of the Flash device, and it is necessary to design a corresponding interface protocol
conversion circuit [2], that is, the Flash controller. The controller acts as a communication bridge
between the core and peripherals in the system, and its function often determines the efficiency of
Flash access.

On the other hand, with the increasing complexity and integration of chip design, the difficulty and
cost of chip verification are also increasing. The traditional verification method of writing directional
use cases through Verilog and manual verification can no longer meet the needs [3]. How to realize
the completeness and efficiency of verification in a short period of time has become the goal pursued
by various companies. With its high flexibility, reusability and portability, UVM has become the
preferred verification methodology in the field of chip design [4] . According to different verification
requirements, verifiers can not only quickly build a verification platform suitable for their own needs
under the existing framework and powerful components of UVM, but also abstract the environment
model and functional modules based on this , is defined as a reusable general verification VIP , which
facilitates the reuse of later verification platforms. The introduction of multiplexing technology
shortens the development cycle and improves verification efficiency.

2. Research and Function Realization of FlexSPI Controller

As a slave on the AXI subsystem, the FlexSPI controller can convert AXI and APB protocols to SPI
protocols, and supports interrupt configuration, software reset, transmission length control, standard
SPI transmission mode, and four-wire transmission mode. Access to external serial Flash under
different working modes and different transmission rates.

2.1 Top-level Scheme Design of FlexSPI Controller

The core function of the FlexSPI controller is to act as a communication bridge between the core and
peripherals. Adopt the top-down design principle, divide different modules and complete their RTL
logic coding according to the different functions. The top-level structure is shown in Figure 1, which
mainly includes bus slave interface, register configuration, data storage FIFO, and communication
control.

RX FIFO
A « control
mode
¢ control
5
g 5
b7 . FSM .Q =
%H Reglste‘r = g0 O
e} configuration — =
= g
w =
) 1)
2 .
m ¢ clk_div
management
TX FIFO [€>

Figure 1. FlexSPI controller top-level structure

2.2 Register Configuration Module

The register configuration module matches the internal registers of FlexSPI by parsing the bus address.
FlexSPI has 10 built-in registers, which are STATUS, CLKDIV, CMD, ADDR, LEN, DUM, TX
FIFO, RX FIFO, INTCFG, INTSTA. During data communication, registers need to be configured
accordingly, and their corresponding functions can be realized by reading and writing control of
different registers. The FlexSPI internal registers and their function descriptions are briefly listed in
Table 1.

Table 1. FlexSPI Internal Registers Description

REGISTER NAME ADDR FUNCTIONAL DESCRIPTION

Pass the configuration to the slave, including chip selection, reset, four-wire read-write mode,
FLEXSPI STATUS 0x00
standard read-write mode

FLEXSPI CLKDIV 0x04 Used to divide the system clock for FlexSPI transfers to generate the required clock
FLEXSPI CMD 0x08 The command corresponding to the read or write transfer
FLEXSPI ADR 0x0C The address to which a read or write transfer is performed
FLEXSPI LEN 0x10 Control the length of data sent by the command register, address register and data register
FLEXSPI DUM 0x14 Dummy cycles between command-+address and read/write data

FLEXSPI TXFIFO 0x18 Write data to TX FIFO

FLEXSPI RXFIFO 0x20 Read data from RX FIFO

FLEXSPI _INTCFG 0x24 Including interrupt enable, the threshold of triggering interrupt

FLEXSPI INTSTA 0x28 Interrupt judgment flag, 0: Interrupt failed 1: Interrupt successful

2.3 Communication Control Module

The Control module completes the main functions of the FlexSPI controller, including the
implementation of mode selection control, command sequence state machine, clock frequency
division management, and shift logic control. FlexSPI completes an access in the form of sending
commands, addresses, alternate bytes, idle cycles, and data. The command sequence state transition
is shown in Figure 2 (Note: In the figure, the IDLE stage can jump to any stage except WAIT EG).
Any stage in the command sequence can be operated, skipped or executed by configuring the
corresponding registers, but at least one of the instruction, address, alternate byte or data stages must
be included [5].

Figure 2. FlexSPI Controller Command Sequence State Transfer

2.4 Clock Divider Management Module

The clock frequency division management module is used to divide the frequency of the system clock
transmitted by FlexSPI, which is the output signal of FlexSPI, and provides the clock to the external
flash to ensure that the data transmission is carried out according to the flash interface protocol.
Realized by a dedicated frequency division counter. The frequency division coefficient can be
configured through the register, 8bit value, which can meet different frequency requirements. The
clock frequency is given by Equation (1).

clk

FlexSPI _CLK (1)
- 2*¥(CLKDIV 1)

2.5 Shift Logic Control Unit, FIFO Module

The main function of the shift logic control unit is to complete the serial-to-parallel conversion during
data communication. The FIFO is mainly used to store data to ensure the continuity of data
transmission. As shown in Figure 3: the control unit receives the control information from the
controller, and controls the shift logic unit to work. When shifting data, it is necessary to count the
number of times of shifting, to judge when to end, and to latch the data at the same time.

en_quad in

counter_in
b ounter_trgt next

counter in[15:2]

counter_in_upd

en control > counter
data_valid unit unit

!

ﬂ)l data latch |(—>| shift logic b

tx_edge

Figure 3. Block Diagram of Shift Logic Control

3. UVM Verification Platform for FlexSPI

In the previous chapters, each module of the Flexspi controller was introduced and analyzed in detail,
and on this basis, each module was coded in RTL based on System verilog. The RTL design at this
time does not guarantee that the designed functions can be implemented correctly. After a design is
realized, we need to go through a lot of verifications to ensure that the design is correct. Therefore,
in order to accurately and truly reflect the correctness of the design functions, it is essential to conduct
complete and comprehensive verification of the design. A mature and systematic verification process
includes the formulation of verification plans and verification schemes, the decomposition of test
points, the development of verification components, environment integration, environment operation
and simulation analysis, and collection of coverage. The UVM verification platform for the FlexSPI
controller will also be built in accordance with this process.

3.1 Verification Plan and Test Point Decomposition

The verification plan defines the content that needs to be verified in the design to be tested, the
characteristics of the system, and the necessary verification platform, environment, method, test case
and expected result to support the verification process [6]. Test point decomposition is the process of
analyzing each function of the design under test one by one with clear semantics, clear structure, and
unambiguous descriptive language. The test point decomposition serves for the later verification
sequence and test cases. Each test point can Cover with one or more test cases.

The FlexSPI controller serves as a communication bridge between the core and peripherals. The goal
of the verification is that the controller can correctly implement all the defined functions. According
to the analysis of the characteristics of the FlexSPI controller, Table 2 lists the FlexSPI controller that
needs to be verified. Functional features, due to limited space, not all of the more detailed feature
divisions are listed.

Table 2. FlexSPI Controller Features

FEATURE DESCRIBE
Reset Support hardware reset and software reset
Read-Write mode Supports standard SPI mode and four-wire transfer mode
Clock divider Support data communication under different clock
Transfer length Supports configuration of different transfer lengths and cross-combination
Dummy cycle Support for adding read-write idle cycles and zero idle cycles
Interrupt Support interrupt request

3.2 Component Development of Verification Platform

The development of verification components is based on the formulation of the previous verification
plan, the realization of the verification scheme and the understanding of the design under test. In this
paper, the design under test is a subsystem composed of the FlexSPI controller, axi, and axi2apb,
using the 32-bit wide axi4 bus as a bridge interconnection. Therefore, the main components included
in the verification environment are transaction agents axi4 agent and flexspi_agent, transaction class,
interface class, configuration class config, register model reg model, scoreboard scoreboard and
container class env. TLM communication is used between components. Each component cooperates
with each other and is independent of each other, which fully embodies the characteristics of high
cohesion and low coupling. At the same time, the bus function model (bfm) and the converter
(converter) for data storage and conversion are integrated internally. The function used for data
conversion is defined inside the converter, which is used to convert the information in the class
defined at the software level and the structure defined at the hardware level, thereby increasing the
readability of the data. The role of bfm is to encapsulate the timing of the low-level bus, and provide

a call interface to the top layer, so that the top layer does not need to care about the implementation
details of the low layer, and focuses on the generation of incentives and the design of verification
cases. This is similar to the object-oriented concept in C++. Objects are equivalent to commands or
calls, and the member functions of objects implement specific functions. The outside world does not
need to care about the internal details of the class, but only needs to know how to call them. The
purpose of bfm is to make the simulation of the verification code faster, the behavior modeling easier,
and the model easier to use.

3.3 Environment Integration of the Verification Platform

The UVM-based verification platform is shown in Figure 4. The top layer (top_tb) is composed of
test environment components and the design under test. They communicate data through the bus
function model bfm and interface. The entire verification platform is divided into two parts according
to whether it includes timing and whether it can be synthesized: the timing and synthesizable part is
composed of the FlexSPI controller, the subsystem composed of axi and axi2apb, the bus function
model (BFM) and the interface. The non-timing and non-synthesizable sections consist of the
remaining components of the verification platform, with the ability to speed up simulation and run
longer tests.

HVL TOP

= - reg_model Env HDL TOP
ase_test

basic_write_test axi4 master

basic_read_test agent bfm
...... T -<_

||| Lot . |

monitor ¥

-
seq se_seq axi4 agent
.)
axi4_basic flexspi_fd perICtOI‘ L y m?Ster
write_seq basic_seq COIlﬁg monitor driver

v

Fr
—
axi4_basic flexspi_cr Y g
d sex &
s Lo T By ofg . i
- sequencer driver =
¢ ¢ 2 flexspi slave £
VvV sequencer g
V_Ssequence _S¢q agent bfm ‘é
i [¢]
axi4 master axi4 master flexspi_agent + lave g
sequence sequencer monitor
config monitor
flexspi slave flexspi slave | dlave .
sequence sequencer —T< sequencer | | driver | > driver >

Figure 4. FlexSPI Controller Verification Platform

4. Environment Operation and Simulation Analysis

The operation process of the verification platform in this environment is shown in Figure 5: the top-
level top completes the declaration of the interface and the instantiation of the DUT, the generation
of the clock and reset signals, and then calls the run_test() function to start the entire verification
platform, usually, run_test() is a most basic test case, which contains the common parts of all test
cases, the verification platform uses Makefile scripts to design common functions such as compilation,
simulation, test case selection, loading waveforms and coverage collection as automated processes
[8], the script Add the "+UVM_TESTNAME=S$(test)" command to the test parameter to pass
different test case names to run different test cases. When all phases in the environment are executed,
call the $finsh() function to end the operation of the entire verification platform.

There are two main ways to judge whether the designed function is correct and whether the
verification platform meets the construction requirements: one is to check various files output by the
verification platform at different stages, such as compilation simulation files and coverage files. The
second is to compare waveforms. In the actual verification work, we tend to combine the two methods.

Taking the clock frequency division and basic data transmission functions in the standard mode as an
example for analysis, the instructions to be executed are written to each register of FlexSPI through
the front door access, and the written instructions, simulation waveforms, and simulation reports are

shown in Figure 6-10.

top-level instantiated
object

v

get the correct Test_ name
and enable the phase
mechanism

execute raise_objection |«

use the start() function of
v_sequence

;

execute v_sequence

judge raise_objection = l
drop_objection use the start() function of
sequence
execute axi4_mst_seq execute flexspi_slv_seq
Y Y
use the start() function of use the start() function of
axi4_mst_seq flexspi_slv_seq

v v

connect the respective sqrin v_sequencer

axi4_mst_sqr

flexspi_slv_sqr

v

call start() function to start
sequence

Y

>< $finish() >

Figure S. Verify platform operation process

e e e T e e
Name Type Size Vvalue

T T e T e
axi4_master_ tx axi4 _master_ tx - @2033

tx_type string 5 WRITE

awid string 6 AWID 0

awaddr integral 32 'hlalezep4

awlen integral 8 'de

awsize string 13 WRITE_4 BYTES

awburst string 10 WRITE_INCR

awlock string 19 WRITE_NORMAL_ACCESS

awcache string 16 WRITE_BUFFERABLE

awprot string 24 WRITE_NORMAL SECURE_DATA
awqos integral 4 'he

walt_count write_address_channel integral 32 'he

wdata[0] integral 32 'h4

walt_count write_data_channel integral 32 ‘he

bid string 5 BID ©

bresp string 10 WRITE_OKAY

no_of _walt states integral 32 'de

walt_count write_response channel integral 32 ‘he

transfer_type string 14 BLOCKING _WRITE

#

2 ck
£ rstn
¢ en
8L clk div
4 clk_div_valid

* flexspi_clk

* flexspi_fall

“ flexspi_rise
* counter_trgt
counter_trgt_next

B counter Jo1 02 {03]od ,00 .01 ,02 ,03 ,04 ,00 ;01 |02 103 104 J00 01 \02 .03 .04 |
84 counter_next 402 }03 [04 00 ,01 j02 03 j04 00 [0l JO2 [03 [04 0O |01 [02 [03 j04 |00 |
* flexspi_clk_next __ [] _| T

* running

4

Figure 7. FLEXSPI CLKDIV simulation waveform

In Figure 6, axi write address awaddr = "h1a102004, corresponding to FlexSPI internal register
FLEXSPI CLKDIV. Write data wdata = “h4, which represents the value of the frequency division
coefficient. According to the clock frequency formula (1-1), we can get that the output clock
frequency of the controller is one-tenth of the system clock frequency. Analyzing the simulation
waveform in Figure 7, we can get It can be seen that the function realization meets the design
requirements.

E e e T e
Name Type Size Value

,,,
axi4 master tx axi4 master tx - @2426

tx_type string 5 WRITE

awid string 6 AWID B

awaddr integral 32 'hlal02018

awlen integral 8 'de

awsize string 13 WRITE_4 BYTES

awburst string 10 WRITE INCR

awlock string 19 WRITE_NORMAL_ACCESS

awcache string 16 WRITE BUFFERABLE

awprot string 24 WRITE_NORMAL_SECURE_DATA
awgos integral 4 'ho

wait count write address channel integral 32 'he

wdata[oe] integral 32 'hfffffola

walt_count write data_channel integral 32 'he

bid string 5 BID ©

bresp string 10 WRITE OKAY

no_of_wait states integral 32 'de

walt_count write response channel integral 32 'he

transfer_type string 14 BLOCKING WRITE

Figure 8. FLEXSPI TXFIFO command

In Figure 8, axi write address awaddr = "h1a102018, corresponding to FlexSPI internal register
FLEXSPI TXFIFO. Write data wdata = "hffff f0la, which means write FIFO data. From the
simulation waveform in Figure 9, it can be concluded that the write element is 1, the write data data i
= "hffff fO0la, the output element is 1, the output data data o = "hffff fOla, and the function
implementation meets the design requirements.

¢ ok j L] _Li i
£ st ni '
£

B elements_o : 00 ﬁDl

&% gata_0 ffioza 00000000 j | Ifftff01a
“ valid_o '
¢ ready i

4 valid i a——— ﬂ_ | I .
B4 data i 00000000 | | [fffffoza 00000... 100000000

S AL L S I I I S |

pointer_out
B elements
“ ful | | |
& |oopl | 0000000a ' ' I

Figure 9. FLEXSPI TXFIFO simulation waveform

After the verification platform runs, the information of the entire simulation test phase will be counted,
and a simulation report similar to that shown in Figure 10 will be generated. The content of the
simulation report generally includes platform operation information, data printing information, and
test results. Verifiers can also design their own simulation reports according to their needs. In this
verification platform, the real-time statistical printing of the coverage rate is added, and the coverage

rate of each test case can be intuitively known.

|# UVM_INFO ../../src/dv/hvl_top/axi4 master_agent//axi4 master coverage.sv(233) @ 35140:
luvm_test_top.env.axi4_master_agent.axi4 master_cov_h [axi4_master_coverage] AXI4 Master Agent Coverage = 15.75 %
UVM INFO ../../src/dv/hvl top/flexspi slave agent//flexspi slave coverage.sv(241) @ 35140:
luvm_test_top.env.flexspi_slave agent_h[0].flexspi_slave_cov_h [flexspi_slave_coverage] flexspi_slave Agent
Coverage = 16.67 %

- UVM Report Summary ---

** Report counts by severity

UVM_INFO : 121

UVM WARNING : 0

UVM_ERROR : 0

UVM_FATAL : 0

*+ Report counts by id

[AXI4_MASTER_DRIVER_BFM] 1

[MSHA DEBUG] 18

[Questa UYM] 2

[RNTST] 1

[TEST DONE] 1

[UVMTOP] 1

[UVM_INFO] 1

[axi4 master agent bfm] 1

[axi4 master coverage] 1

[axi4 master driver] 50

[axi4 master_std mode write even_clkdiv_reg seq] 22
[flexspi_fd_basic_slave_seq] 2

[flexspi slave coverage] 1

[Tlexspi_slave driver] 4

[flexspi_slave driver bfm] 5

[flexspi slave monitor] 1

[flexspi_slave monitor bfm] 5

[std mode write even clkdiv reg test] 4

++ Note: $finish : /opt/mentor/questasiml@.7/questasim/linux/../verilog _src/uvm-1.1d/src/base/
vm_root.svh(430)

Time: 35140 ns Iteration: 53 Instance: /hvl top
Saving coverage database on exit...

End time: 20:53:34 on Dec 06,2022, Elapsed time: 0:00:08

G G S W W W G Gtk e W e W G 9 W e W W G I 3 W W W W W W
.

Figure 10. Simulation report of UVM verification platform

5. Conclusion

In this paper, after analyzing the functional requirements of the FlexSPI controller, the scheme design
and RTL coding of all sub-modules are realized. According to its functional characteristics, a detailed
verification scheme and verification plan are formulated, and the development of verification
components and the integration of the environment are carried out. By designing the functional model,
the simulation speed is accelerated. The verification platform designed in this paper has good
portability and reusability, and can be used as a reference for building other bus modules and chip
interface verification platforms, so as to speed up the construction of the verification platform and
improve the verification efficiency.

References

[1] Han Wang, Guangjun Li, Zhiyong Guo. Research and Application of Synchronous Queue Serial Interface
QSPI [J]. Single Chip Microcomputer and Embedded System Application, 2008(04):67-69.

[2] Tao Cao. Design and Implementation of Flash Controller on L-DSP Chip [J]. Intelligent Computer and
Application, 2020, 10(06):142-147.

[3] Fei Wu. Quad-SPI Controller Design and UVM Verification Based on AHB Protocol [D]. Xidian
University, 2021. DOI: 10.27389/d.cnki.gxadu.2021.001273.

[4] Universal Verification Methodology (UVM) 1.1 User’s Guide[S]. Accellera, 2011.

[5] Qi Chen, Minhua Ren, Fuzhi Zhang, Biyang Zhang. Design and Verification of Synchronous Serial
Interface QSPI [J]. Single-chip Microcomputer and Embedded System Application, 2022,22(08):79-82.

[6] Fiergolski A. Simulation Environment Based on the Universal Verification Methodology[J]. Journal of
Instrumentation, 2017,12(1):C01001-C01001.

[7] Yong Guo, Yubo Wang, Xiaoke Tang, et al. A SPI Interface Module Verification Method Based on UVM
[C]. 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence
(ICIBA), Chonggqing, China. IEEE, 2020:1219-1223.

[8] Guo, Y. et al.: A SPI interface module verification method based on UVM. In: IEEE International

Conference on Information Technology, Big Data and Artificial Intelligence, pp. 1219-1223. Chongqing,
China (2020).

[9] Yeqiang Peng. Design and Implementation of QSPI-Flash Controller Applied to Internet of Things Secure
Storage [D]. Huazhong University of Science and Technology, 2019. DOI: 10.27157/ d. cnki. ghzku. 2019.
003330.

[10]Zhe Ma. Research and Implementation of APB-SPI Verification IP Based on UVM [D]. Xidian University,
2021. DOI: 10.27389/d.cnki.gxadu.2021.001208.

[11]Zhaobin Li. Research and Implementation of IP Verification of AXI4 Bus Protocol Interface Based on
UVM [D]. Jinan University, 2017.

	Keywords: Flex SPI Controller; UVM; Script; Verifi
	1.Introduction
	2.Research and Function Realization of FlexSPI Contr
	2.1Top-level Scheme Design of FlexSPI Controller
	2.2Register Configuration Module
	2.3Communication Control Module
	2.4Clock Divider Management Module
	2.5Shift Logic Control Unit, FIFO Module

	3.UVM Verification Platform for FlexSPI
	3.1Verification Plan and Test Point Decomposition
	3.2Component Development of Verification Platform
	3.3Environment Integration of the Verification Platfo

	4.Environment Operation and Simulation Analysis
	5.Conclusion
	References

