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Abstract:As smart logistics and factories advance, Automated Guided Vehicles (AGVs) face
increasingly complex and dynamic environments, requiring more intelligent path planning and
obstacle avoidance. Traditional path planning algorithms, while widely used, often suffer from high
computational costs and limited generalization capabilities. This paper introduces an optimized
approach utilizing Deep Deterministic Policy Gradient (DDPG) and Multi-Agent DDPG
(MADDPG) algorithms to address AGV cooperative path planning in dynamic scenarios. By
modeling AGVs as agents within a deep reinforcement learning framework, a centralized training
and decentralized execution approach is employed. The algorithms are enhanced through optimized
experience buffer sampling methods, allowing agents to autonomously navigate and avoid static
and dynamic obstacles.

Keywords:AGV; Deep Reinforcement Learning Algorithm; TD-error; Intelligent Collaborative
PathPlanning.

1. Introduction

In recent years, with the development of smart logistics and smart factories[1] , the AGV operation
environment is more complex and dynamic, and the requirements for AGV intelligence are higher,
so it is especially important for the implementation of AGV obstacle avoidance and cooperative path
planning in dynamic environments. The current traditional path planning methods include algorithms
based on fuzzy logic[2] , simulated annealing[3] , artificial potential fields[4] , and intelligent path
planning algorithms such as ant colony algorithm [5] , A* algorithm [6] , genetic algorithm [7] and
particle swarm algorithm [8] and so on.

Through analyzing the current situation of domestic and foreign research, the traditional path
planning algorithm is computationally intensive, with a single task and weak generalization ability of
intelligent algorithms based on grid method construction map construction. Deep reinforcement
learning has achieved breakthrough success in mobile [9-11] , offering unlimited possibilities to
achieve intelligent control and autonomous learning of robots[12]. Instead of relying on data models
and raster map construction, deep reinforcement learning algorithms only need to set planning goals
and let the agents keep exploring to achieve problems such as obstacle avoidance, path planning, and
navigation.

Deterministic Policy Gradient algorithm [13] in deep reinforcement learning is an artificial
intelligence method for continuous policy learning, which is naturally applicable to a class of dynamic
obstacle avoidance type continuous decision problem of achieving stable operation of the AGV in



dynamic scenarios[14]. In the deep reinforcement learning framework, by considering AGVs as
agents interacting with the environment, a centralized training and decentralized execution approach
are used to set a reasonable reward function and optimize the experience pool so that the agents update
their strategies to obtain the maximum reward. Thus, the learning of the optimal strategy for the AGV
to reach the target points in a shorter time is achieved.

In this topic, the MADDPG [15] and DDPG algorithms based on the deep learning framework are
used to train AGV operation models for the problem of achieving cooperative and stable AGV
operations in dynamic scenes. The optimized MADDPG algorithm has a better strategy compared
with the MADDPG and DDPG algorithms before the improvement, which can realize the task of
cooperatively reaching the destination and avoiding static and dynamic obstacles in the dynamic
environment of AGV.

2. AGV Markov Model Description

2.1. AGYV State Space Description

Taking the AGV as the agent body, the environmental information perceived during the travel of the
AGYV is described as the state space, and the state space considers the location of the destination as
well as the location of the obstacles.
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The S,; represents the communication information between AGVs, which is obtained by the angle
matrix and the position coordinates of AGVs.
The state space of AGV is described as S= (Sea , Spq » Suar » DiSea , Dis,, )

2.2. AGV Action Space Description

The action in AGV path planning is mainly the control of speed and angular velocity, through the
speed control can realize the acceleration when far from the target point and deceleration when close
to the obstacle; through the angular velocity control can realize the orientation conversion of AGV.
According to the characteristics of AGV, the action of AGV is discrete, the speed is discrete as 0.5m/s,
0.2m/s, Om/s, and the angular speed is discrete as -1rad/s, 1rad/s, -0.5rad/s, 0.5rad/s, Orad/s. In practice,
the specific action is shown in Table 1.

Table 1: Action space

Default Parameters Angular velocity
0 0.5m/s -1rad/s
1 0.2m/s -1rad/s
2 Om/s -1rad/s
3 0.57/s -0.5rad/s
4 0.5m/s Orad/s
5 0.2m/s Orad/s
6 0.5m/s 0.5rad/s
7 0.5m/s lrad/s
8 0.2m/s lrad/s



9 Om/s 1rad/s

2.3. MADDPG Algorithm

The MADDPG algorithm is a multi-agent algorithm that extends the DDPG algorithm and the Actor-
Critic method. The framework of the MADDPG-based AGV training model is shown in Fig.1.The
AGVs running in the operational environment consist of an Actor-Critic dual network, and the AGVs
interact with the environment and execute actions at all times. In the process of training path planning
strategies for AGVs, a centralized training and decentralized execution approach is used, i.e., when
the number of AGVs exceeds one, the AGVs not only rely on their own strategies to execute actions,
but also extract the experience of other agents from the experience buffer to train their own neural

networks.
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Figure 1. AGV training model framework for MADDPG

3. Experiment Simulation

3.1. Environment and Parameter Setting

This experiment was simulated for single AGV, double AGV in the experimental environment, and
the starting point of AGV as well as the unknown of the target point and obstacles were initialized
and updated for each episode of the experimental environment. At the same time, in order to reduce
the problem of increasing distance from the target point caused by the inability of the AGV to explore
effectively at the early stage of training, this experiment sets the maximum step size of 25 per episode.
specific experimental parameters are shown in Table 2.

Table 2: Hyperparameters of path planning method

Number Speed Description
Ir 0.01 Rate of learning
Mini-batch 1024 Mini-batch gradient descent
D le6 Experience buffer capacity
Y 0.95 Decay factor
o 0.6 Mini-batch
B 0.442 Priority weighting amplification factor



Y 0.95 Offset probability

3.2. Experimental Results and Discussion

The average rewards, collision rates and average coverage rates are shown in Fig. 2 and Fig. 3 after
5000 episodes and 30 000 episodes of training with the improved MADDPG, MADDPG-per, DDPG,
and DDPG-per, respectively, in the environments with the number of AGVs N=1, and N=2.
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Figure 2. Single AGV strategy training

In Fig. 2, it can be seen that for single a AGV system in the MADDPG-per algorithm and DDPG-per
algorithm using the preferred experience mechanism reward convergence with small improvement,
and the target coverage and collision rate are almost the same.
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Figure 3. Two AGVs strategy training

As can be seen from Fig. 3, for the dual AGV system, the reawrds with the MADDPG-per algorithm
have a greater improvement in the middle of training, smoother reawrd values after convergence, and
higher target coverage and lower collision rate with the same episode.

For the single AGV system, after 3000 episodes, the AGV basically learns the path planning strategy.
For the dual AGV system, after 25 000 episodes, the AGV basically learns the path planning strategy.
the specific strategy indexes of the AGV are shown in Table 3 and Table 4.

Table 3: Reward Comparison

Number of AGVs Algorithm Reward Convergence Episode Reward Convergence Value
MADDPG-per 2650 159.63
MADDPG 2700 154.83
Single AGV
DDPG-per 2770 153.52
DDPG 2800 151.52
MADDPG-per 16000 515
MADDPG 18500 395
Two AGVs
DDPG 26000 355
DDPG-per 27000 350

Table 3 shows the reward training of a single AGV and Two AGVs in an unknown dynamic
environment. The MADDPG-per algorithm for a single AGV has the fastest reward convergence,
with a basic convergence at episode 2650 and a convergence reward of 159.63. Compared to the
MADDPG algorithm the payoff convergence is 1.9% faster with a 3% increase in reward and
compared to the DDPG algorithm the reward convergence is 5.7% faster with a 5.08% increase in
reward. The DDPG- per algorithm with a single AGV has a faster reward convergence rate, basically



converging at 2770 episodes with a convergence reward of 153.52, which is 1.08% faster and 1.3%
more rewarding compared to the DDPG algorithm reward convergence rate. Over all the single AGV
with DDPG-per and MADDPG-per has less return improvement. The MADDPG-per with two AGV's
has the fastest reward convergence, with a basic convergence at 16 000 episodes and a convergence
return of 515. compared to the MADDPG algorithm return convergence speed is improved by a 15.6%
reward increase of 23.3%, compared to the DDPG algorithm reward convergence speed is improved
by 62.6% and a reward increase of 31.1%. Over all the reward performance of MADDPG-per for two
AGVs has a more significant improvement than a single AGV, and the reward performance of DDPG-
per has a slight decrease than DDPG.

Table 4: Comparison of task indicators

Number of AGVs Algorithm Target coverage rate Impingement rate
MADDPG-per 78.1% 0.048
MADDPG 75.4% 0.052
Single AGV DDPG-per 73.4% 0.062
DDPG 73.2% 0.069
MADDPG-per 76.6% 0.026
Two AGVs MADDPG 65.4% 0.027
DDPG 62.8% 0.029
DDPG-per 59.1% 0.029

In Table 4, the target coverage and collision rates for a single AGV and two AGVs at the convergence
of training rewards are shown. Among them, for a single AGV, MADDPG-per achieves the highest
target coverage of 78.1%, which is 3.46%, 6.01%, and 6.3% higher compared to the other algorithms,
respectively. The collision rate reaches a minimum of 0.048, which is 8.3%, 29.1%, and 43.8% lower
than the other algorithms, respectively. the target coverage of DDPG-per reaches a maximum of
73.4%, which is 0.27% higher than the DDPG algorithm, respectively. The collision rate reaches
0.062, which is reduced by 11.3% compared to the DDPG algorithm. Among them, for dual AGVs,
MADDPG-per achieves the highest target coverage of 76.6%, which improves 14.6%, 18.1%, and
22.8%, respectively, compared to other algorithms. The lowest collision rate reaches 0.026, which is
17.4%, 26.1%, and 26.1% lower compared to other algorithms, respectively. Among them, DDPG-
per takes the sample importance measure only for the critic input of one AGV, while the transition of
different AGVs is different, and the sample importance of AGV, and AGV; are different, and the
number of training for the important sample of another AGV becomes less. Therefore, DDPG-per has
a better strategy in a single AGV, while the performance of the algorithm decreases in double AGV
training. Overall for the MADDPG-per algorithm, both single and dual AGVs have higher target
coverage and lower collision rates.

4. Conclusion

In this paper, Markov model is constructed for the characteristics of AGV operation. And two
continuous policy algorithms of deep learning algorithms, DDPG and MADDPG, are used to treat
AGVs as agents, while the experience buffer sampling methods of the two algorithms are optimized.
The experiment uses the gym platform to simulate the unknown dynamic AGV operation
environment, and each episode is randomly assigned with unknown obstacles and target points. The
experiments compare the results of the two algorithms before and after improvement, with reward
convergence, collision rate and coverage rate as performance indicators. Finally, the visualization
results of the model training show that MADDPG-per is able to learn better strategies and has the
ability of autonomous path planning to better achieve the task of obstacle avoidance and cooperative
operation of AGVs in unknown dynamic environments.
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