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Abstract:In recent decades, Simultaneous Localization and Mapping (SLAM) has emerged as a
critical area of research within autonomous robotic systems, playing a fundamental role in
navigation and environmental mapping. Traditional Rao-Blackwellized Particle Filter (RBPF)-
based SLAM algorithms face challenges related to particle degradation and high computational
cost, particularly as the number of particles increases. This paper addresses these issues by
proposing an enhanced Gmapping algorithm based on improved particle swarm optimization (PSO).
The proposed method introduces normal distribution and compression factors to optimize PSO
convergence, improving localization accuracy while reducing the number of sampled particles.
Experimental results demonstrate that the improved algorithm reduces localization error and
enhances mapping accuracy, all while lowering hardware requirements. These findings highlight
the potential for deploying this algorithm on cost-effective robotic platforms in future applications.
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1. Introduction
All In the last decades, Simultaneous Localization and Mapping (SLAM) has been one of the most
actively researched problems in autonomous robotic systems [1].SLAM algorithms refer to the
motion of a robot in a completely unfamiliar situation, through the sensors it carries, to estimate its
own position and to construct a map of the environment through which it passes.SLAM is a
prerequisite for trajectory planning, trajectory tracking and automatic navigation of robots, thus
making it an important component of the navigation system of mobile robots.SLAM has achieved
good results in the last decades of technological development.
The common algorithms used for LiDAR SLAM map creation are mainly filter-based (EKF-SLAM,
RBPF-SLAM and Fast-SLAM) algorithms and graph optimization-based (PTAM-SLAM, SD-SLAM,
ORB-SLAM, SVOSLAM, RGBD-SLAM, etc.) algorithms [2]. The traditional RBPF algorithms
often use particle filtering algorithms to evaluate the state of the robot.To estimate the robot's pose,
the algorithm needs a lot of particles, and the more particles, the more accurate the calculation.
However, as the number of particles rises, so does the computational difficulty [3-6]. In order to
change the assessment of the robot state, the particle filtering algorithm gradually modifies the
particle weights based on the measurement findings. Particle deterioration is unavoidable as the
algorithm's iterations are multiplied, though, as there will be a greater proportion of heavier particles
and a steady decline or even disappearance of the smaller ones.In order to change the assessment of
the robot state, the particle filtering algorithm gradually modifies the particle weights based on the
measurement findings.The classic RBPF-SLAM algorithm's core has been significantly enhanced in
the literature [7], in other words, during the particle sampling stage, the bit-pose evaluation and
verification are carried out utilizing line segment features to minimize the sample area. The approach
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is then updated in the weight update stage, which lowers the computational cost by using weights
based on similarity ratio selection. However, the current algorithm's map generation process suffers
from intermittent particle deterioration and somewhat frequent resampling time. In the literature [8],
a Rao-Blackwellized particle filter-based SLAM solution was proposed to improve the proposal
distribution by exploiting the independence between particles, extracting samples from the motion
and optimizing them by scan matching. Adaptive resampling with smooth likelihood is used to avoid
particle exhaustion in environments with large nested loops. However in the absence of data
compression, it inevitably increases memory consumption and it increases more significantly as the
number of particles increases.
Based on Gmapping and improved particle swarm optimization algorithms, this paper proposes a
Gmapping based on improved particle swarm convergence, which can not only effectively reduce the
number of particles sampled, but also optimize and improve the resampling strategy to increase the
proportion of high-weight particles without affecting the diversity of retained particles, thus reducing
the impact caused by particle degradation, which can generate more reliable robot poses and achieve
the ultimate goal of improving the accuracy of localization and environmental mapping effects.

2. Gmapping Algorithm
2.1. The Traditional RBPF-SLAMAlgorithm
The full SLAM problem defines SLAM as the a posteriori estimation of the entire path and map.

p(x1:t ,m | z1:t ,u1:t )
The equation where x denotes the robot state, m denotes the environment map, z denotes the sensor
observations, u denotes the input control, and the subscript denotes the moment, is the potential
trajectory of the robot over time [1, t] given the measurements and control data (usually the odometer).
the Rao-Blackwellized particle filter is an effective method for solving the SLAM problem, where
the posterior trajectory and mapping is defined by Equation :

p(x1:t ,m | z1:t ,m) p(x1:t ,m | z1:t ,u1:t )p(m | z1:t ,u1:t )
The result is obtained by computing the product of the two posterior probabilities. Here, the mapping
posterior p(m | z1:t , u1:t ) can be efficiently computed by treating it as a mapping problem with known
poses. The positional posterior points p(x1:t | z1:t , u1:t ) can be estimated by means of a particle filter
where each particle has its own map [9].

2.2. Improvements to the Proposed Distribution
This motion model has the benefit of being simple to calculate, but the proposed distribution comes
in second place only to the ideal solution, which is most likely to happen if the robot is fitted with a
laser rangefinder, especially since the sensor data is much more accurate than estimates of robot
motion based on odometers [10]. The accuracy of the control volume estimated by the odometer is
much less than that of the observation model built by the laser sensor, and to overcome this problem,
the nearest sensor observation can be considered when generating the next generation of samples, and
by integrating into the proposal, the sampling can be focused on meaningful regions of observation
probability [11,12]. Therefore Grisetti et al. proposed equation to calculate a better proposal
distribution.
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Figure 1. Distribution of Lidar observation model and odometer motion model

The dashed line is the probability distribution, which is a Gaussian distribution consistent with
odometry sampling, and the solid line is the probability distribution, which is a Gaussian distribution
of states obtained after observation using a laser. If the proposal distribution is represented by laser
matching, the sampling interval can be restricted to a relatively small range, so that a smaller number
of particles can be used to cover the probability distribution of the robot's poses, and for each particle
a random scan can be matched to find the spatial location of the maximum in that region.

3. Experimental Results and Analysis
3.1. Improved PSO Algorithm Simulation
In order to evaluate the effectiveness of the improved PSO algorithm, simulations were carried out
on MATLAB. The number of iterations in the simulation was set to 150, ＝ 0.724 ， c1 ＝
1.49445 ， c2 ＝ 1.49445, the population size was 50 and the expected value of the normal
distribution was set to d ＝0.5. The simulation results are shown in Figure 3. It can be seen that the
improved PSO algorithm has fewer iterations compared to the traditional PSO, which proves to be
faster in convergence.

Figure 2. Comparison of improved PSO and traditional PSO iterative optimization
3.2. Positioning and Map Building

Table 1:Data comparison of the improved Gmapping

Algorithm Datasets Number of
particles

Resampling
times

Root Mean Square
Error

Karto
FHW

Freiburg Campus
14 112 0.204

36 131 0.294

Gmapping
FHW

Freiburg Campus
14 128 0.189

36 157 0.256

Improved
Gmapping

FHW
Freiburg Campus

14 135 0.132

36 167 0.228
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For the Gmapping algorithm incorporating the improved PSO, this paper first validates the simulation
on two publicly available datasets, FHW and Freiburg Campus, on an Ubuntu 20.04 + ROS melodic
environment. The simulation results and comparisons are shown in Table 1, where the mean square
error RMSE is calculated from Equation, where X and X ' are the actual and algorithm-located
positions. From the data in Table 1, it can be seen that the number of resampling is higher compared
to the Karto algorithm when the number of particles is maintained at the same level, but the RMSE
after building the map results is significantly lower, proving that its building effect is more in line
with the real environment.

RMSE

Firstly, this paper uses the physical simulation platform Gazebo in ROS to add real-world physical
simulation to the experiment, constructing a relatively simple environment model with the outer
borders of the house white and square with simulated furniture and obstacles in the room, the
simulation environment is constructed as shown in Figure 3.

Figure 3. Indoor simulation environment

The Gmapping algorithm is primarily used to check for consistency in the experimental data. In
addition, a handle was utilized to control the movement of the AGV model in the simulated
environment, which was used to gather data sets and record laser, odometer, and IMU data.

Figure 4. Built figure results of Gmapping



Figure 5. Built figure results of Karto

Figure 6. Built figure results of the improved

The results of the improved algorithm are compared to the current open source solution with Karto,
which is recognised for its good results. The optimised algorithm achieves excellent build results with
low sampled particles, and its overall convergence is much better and matches the actual map.
Moreover, as only a low number of particles is required, the environmental configuration required to
host the algorithm is reduced.

4. Conclusion
This paper introduces a normal distribution and a compression factor on the basis of the traditional
PSO algorithm to improve the PSO convergence speed and the possible local optimum solution
condition, based on which Gmapping based on the improved particle swarm convergence algorithm
is proposed. Through experimental verification, the algorithm reduces the localization error and
improves the algorithm's map building effect with a low number of sampled particles. At the same
time low sampling particles require lower hardware configuration to run the algorithm, which is
beneficial to invest in lower cost hardware in the future.
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